DANIEL DE MIRANDA E SILVA FERREIRA
MARCO ANTONIO DE ALMEIDA SILVA

Especificagfo e Desenvolvimento de
um Controlador E-MFG para
Sistemas Flexiveis de Producio

Trabalho de formatura apresentado a
Escola Politécnica da Universidade de Sdo Paulo

Sio Paulo
1998

DANIEL DE MIRANDA E SILVA FERREIRA
MARCO ANTONIO DE ALMEIDA SILVA

Especificacdo ¢ Desenvolvimento de
um Controlador E-MFG para
Sistemas Flexiveis de Producio

Trabalho de formatura apresentado a Escola
Politécnica da Universidade de Sdo Paulo

Area de Concentragdo:

Engenharia Mecénica - Automac#o e Sistemas
Orientador:

Prof. Dr. Diolino José dos Santos Filho

‘\
o

i |
Sao Paulo
1998

Aos nossos pais, pela oportunidade de realizarmos este
curso e a todos aqueles que nos apoiram nesta conquista

AGRADECIMENTOS

Ao Prof. Dr. Diolino José dos Santos Filho, pelo apoio, orientacio e

confianc¢a durante o decorrer do curso.

Aos colegas Engenheiros André, Guilherme, Jairo, Jaime, Jo%o, Mauricio,

Ricardo, Valdir pela amizade e apoio.

Aos Engenheiros Marcio e Fabio pela colaboragio, revisdes e discussdes

que muito auxiliaram nesta conquista.

Ao Engenheiro Vinicius pela confianga no sucesso.

A todos na Mecatrdnica pelo apoio.

A Giselle pelo apoio e auxilio nas revisdes e pela confianga no sucesso.

Enfim, a todos aqueles que de alguma forma colaboraram na execucéo

deste trabalho.

Escola Politécnica da Universidade de Sao Paulo
Departamento de Engenharia Mecinica - Automacdo e Sistemas

Especificacio e Desenvolvimento
de um Controlador E-MFG para
Sistemas Flexiveis de Producao

Orientador: Prof. Dr. Diolino José dos Santos Filho
Daniel de Miranda e Silva Ferreira NUSP: 221111
Marco Antonio de Almeida Silva NUSP: 1517676

Sdo Paulo
Dezembro de 1998

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

INDICE

INDICE DE FIGURAs...... 4
RESUMO 6
“ABSTRACT™. " 7
1-INTRODUCAO 8
1.1 - AUTOMACAO DA MANUFATURA E SISTEMAS FLEXIVEIS DE MANUFATURA.................. 10
1.2 - A APLICAGAO DO MFG Na MODELAGEM E CONTROLE DE SIM'S................ ... i1
1.3 - MOTIVACAO E OBJETIVOS PO TRABALHO. ..ot i1
47 ORGANIZAGRODO TRABALKO ..., 12
2 - MODELAGEM DE SISTEMAS INTEGRADOS DE MANUFATURA 13
e e I 13
2.2 - MODELAGEM UTILIZANDO O MEG. it 13
2.3 - MODELAGEM HIERARQUICA UTILIZANDO O PESIMFG ..o 13
2.4 - CONSIDERACOES QUANTO A SISTEMAS FLEXIVE!S DR MANUFATURA.........covvoovvere 20
2.5 - MODELAGEM 0 PO OEMEG. .ot 22
2.6 - A APLICACAO DO PFS/E-MFG A MODELAGEM DE SISTEMAS FLEXIVEIS DE MANUFATURA ... 25
3 - ARQUITETURAS E ESPECIFICACAO DE CONTROLE EM UM SISTEMA FLEXIVEL
DE MANUFATURA : 31
3.1 - ARQUITETURAS DE CONIROLE ..ottt 31
3.L1 - Controle COMGUD ..ot 37
D oNIE DISHMID.. oo e 32
3.2 - APLICABILIDADE DO E-MFG A0 CONTROLE DE SISTEMAS FLEX{VEIS DE: MANUFATURA ... 32
3.3 - ESPECIFICACAO DE SISTEMAS DE CONTROLE ATRAVES DO EMFG ..o 35
4- CONTROLADOR E-MFG................. " .37
R e 37
4.2 - ANALISE DE ALTERNKTIVAS oo 38
4.2.1 - Plataformas de Hardware/Sistema Operacional T e 38
4.2.2 - Arguitetura de Sofware e Lstruturas de Dados 40
4.3 - MODELAGEM ESTRUTURAL/FUNCIONAL DO CONTROLADOR ..o 42
4.4 - INTERFACES DE COMUNICACAO E SINAIS DE CONTROLE ..o 43
S- LINGUAGEM DE PROGRAMACAO E-MFG SCRIPT .vururvrvenrressee.. 45
5.1 - ESTRUTURA DO E-MF(G R 45
12 SETEHD oo 46
3.1.2 - Incluséo de GO TEMPIBIES. s 46
B eGSO T 47
529 0 B 47
P NGO o g e 47
Esse comando define que arquivo serd processado em conjunio com o presente grafo, sendo que
todas os nomes de seus elementos Serdo precodidos de Prefixo. ... 47
2 28 EUPC oot 48
598 S MARKS ..ot 48
328 e SBOMES s 49
3.2.6 - Tags < TRANSITS>51
R i e 3!
38 B SCATES i 52
G ol B, e A 56
5.3 — EXEMPLO DE UM GRAFO DBSCRITO POR EMMEG SCRIPccvooooi 57
5.4 - OBSERVACAO SOBRE A ESPECIFICACAO DO E-MFG SCRIPT ... 60

-1-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

6 - ESTRUTURA DE DADOS 61
6.1 - BLOCOS FUNCIONAIS ELEMENTARES ... oo oo 62
6.1.1 Estrutura dos Atributos das MATCS............covcomveerveeeeeee oo 62
6-1.2 ESIUUPA GOS AUTBUIGTES.......oooeor oo 43
6.1.3 Estrutura das CondigBes BOOIEQNGS...........evoueroevvvessoe e eseoosooss 64
6.1.4 Estrutura dos Filtros dos Arcos Orientados e i et ras e e sene e eese s eennns 0
6.2 - REPRESENTACAO DOS ELEMENTOS DOE-MFG ..o 73
6.2.1 - Representaglo Gas MAFCASc....covervsomesroreecoe s oooooossosnseseeo 73
A e 74
6.2.3 - RepreSentaglio Ao GaIES................oveceeeumeesoemrereeseoeeseeeososoosooon 76
6.2.4 - Representacdo das Ti FANSIEOCS covervveriooniis v stsisiec s s e st s ee o 80
6.2.5 - Representagio dos APCOS OPIeIaHDS..........cov.evvvvvcereocer e &2
6.3 - REPRESENTACAO DO GRAFOocceovevsemerros oo oo oo 83
Ja LT o e O S 84
6.5 - GERENCIADOR DE MARCAS. ..o cevececronsons oo ooosoosisio 87
66 - CONTROLADORDE VO ...ttt 90
6.6.1 — COMUPICAGHO DDE .cc.cveesrorooeeeeserssssssesssseesssrssessssesseosseesseeee 90
6.6.2 = Ciclo de UPAQle............oceovceoerecevesssess oo oo 93
6-0.3 — ESHUBIIG IREING ..c.cccovvvrrvrrsessesceersss s sonees e oo 93
8.7+ INTERFACE w.-rtorreccssemeenisnsnsnssss s ssssssesoes s 95
7- ESTRUTURA DO CONTROLADOR 97
7.1~ CICLO GERAL DO PROGRAMA....... ..ot 97
72 = CICLODE CONTROLE. ..o oot eoso s o8
8 - SEQUENCIAS DE TESTES wvvoovennereoeerseooosoooooooooso 100
8.1 - TESTES DE MONTAGEM DA REPRESENTACAO INTERNAvvovocovoeoeee oo 101
8.2 - TESTES DE DINAMICA DE DISPARO ..o 101
8.3 - TESTES DE COMUNICAGRO........ccescvscrsensos oo 102
8.4 = VALIDACAO GERALcc.ccvvvcvsvsosetvsetooes oo seose oo 102
9 - COMENTARIOS E CONCLUSOES 103
BIBLIOGRAFIA 106
APENDICE I - CRON OGRAMA DE ATIVIDADES 108
APENDICE 11 - SEQUENCIA DE TESTES 109
A, SEQUENCIA 1 - TESTES DE CONSTRUGAO DO GRAFO E DINAMICA DE DISPARO ... 109
B. SEQUENCIA 2 - TESTES DE CONSTRUCAO DO GRAFO £ DINAMICA DE DISPARO..................... 111

C. SEQUENCIA 3 - TESTES DE CONSTRUCAO DO GRAFO, DINAMICA DE DISPARO E INTEGRAGAO COM
i 113
D. SEQUENCIA 4 - TESTES DE INTEGRACAC COM OUTROS APLICATIVOS ..o 115
APENDICE IIl - MAN UAL DO APLICATIVO e 117
EXBECUTANDO UM PROGRAMA DE CONTROLE: ... o oo 117
TESTANDO E CONFIGURANDO A COMUNICACAO VIADDE:ccoovvooioiioeo 118
APENDICE IV - CODIGO FONTE DO CONTROLADOR 120
DEFINICOES GLOBAIS.........coocvsve oo rescretcetes s 120
Files Elements.h and Definitions.h - GIOBa.u......ovvevoeoooesoo oo 120
A - BLEMENTOS ESTRUTURAIS BASICOS ... 122
Files Basis.h and Basis.cpp - E-MFG base build elements....................oo ... 122
Files Arcfilt.h and Arcfilt.cpp - EMFG ATC'S FHOrS..oeeoeeooooosoos 41
Files Array.h and Array.cpp - Structural Elements AVPQYS oot 144
Files List.h and List.cpp - CLinkedList Node and Implementation................ooomeevemvosrooon. 154
Files Wordsarray.h and Wordsarray. €pp - String arrays with copy construcior..................... 165
B - ELEMENTOS ESTRUTURAIS DO B-MFG ... oo 166

Controlador E-MFG para Sistemas Integrades e Flexiveis de Produgio

Files Mark.h and Mark.cpp - E-MFG MAEES......covooovotevcereesineeer oo 166

Files Boxes.h and Boxes.cpp - E-MFG BOXES ..o..oovcvecoosrsosoooososso 172
Files Transit.h and Transit.pp: E-MFG TrGRSHIONS ..o 193
Files Arcs.h and ATCS.cpp: E-MFG APCS....o.ovvevmveeoes s oo 203
Files Gates.h and Gates.cpp: E-MFG GAIES cov..ovrver oo 205
C = ESTRUTURA DO GRAFOe... oot 213
Files Graph.h and Graph.cpp - E-MFG L SR] £
D - GERENCIADOR DE MARCAS E CONTROLADORDE /0. oo 216
Files Manager.h and Manager.cpp - E-MFG Mark Manager ..o, 216
Files Comnm.h and Comm.cpp - COMMURICIONo.vvcereesveesemsoooooses 227
Files Ddesock.h and Ddesock, cpp - DDE Socket Implememtation............evvvvosovooooooooooo 235
E - INTERPRETADOR..o.cvecrrscncecossesrncessnsecessamsssseesressseesssssso 245
Files Interp.h and Interp.cpp - E-MFG Graph Interpreter and Compiler ... 245
e 308
Files Ema.mak - E-MFG Controller A pplication Makefile.........vvvoeeeeoerroeesreerooooo 308
Files Etna.h and Etna.cpp - E-MFG Controller ApPlication............eeeevvoneeeeeesrserornn 322
Files Mainfrm.h and Mainfim. pp - E-MFG Controller Main Frame Window................... .. 328
Files Etnadoc.h and Etnadoc. pp - E-MFG Controller Documentooooooo 330
Files Etnaview.h and Etnaview.cpp - E-MFG Controller Document View s 333
Files ControleDlg.h and ControleDlg.cpp - E-MFG Controller Control Dialog Box 352
Files DDEOptions.h and DDEQOptions. cpp - E-MFG Controller DDE Options Dialog Box..... 354

Controlador E-MFG para Sisternas Integrados e Flexiveis de Prod ucio

FIGURA 2.2-1 - ELEMENTOQS ESTRUTURAIS DO MFG. 14
FIGURA 2.2-2 - MACRO ELEMENTOS DO F-MFG . 15
FIGURA 2.2-3 - DISPARO DE TRAN SICAO E TIPOS DE CONFLIT 0 . 17
FIGURA 2.3-1 - ELEMENTOS DO PFS 19
FIGURA 2.3-2 - EXEMPLO DE MODELAGEM EM PFS 19
FIGURA 2.3-3 - DETALHAMENTO DO MODELO PFS DAS ATIVIDADES NA FRESADORA
CNC 20
FIGURA 2.4-1 - EXEMPLO DE SISTEMA FLEXIVEL DE MANUFATURA 20
FIGURA 2.4-2 - MODELO F-MFG PARA A PRODUCAO DE PECAS EM LOTES ... 21
FIGURA 2.4-3 - MODELO F-MFG PARA A PRODUCAO DE DOIS TIPOS DE PECAS
SIMULTANEAMENTE 21
FIGURA 2.5-1 - ESTRUTURA DA MARCA INDIVIDUAL NO E-MFG ORIGINAL E
MODIFICADO 23
FIGURA 2.5-2 - COMPOSICAO DE MARCAS NO E-MFG, 24
FIGURA 2.5-3 - REPRESENTACAO DO MODELO FIFO E LIFO DE UM BOX
CAPACIDADE w24
FIGURA 1.5-4 - MODELAGEM DE UM BOX AGRUPADOR 25
FIGURA 2.5-5 - MODELAGEM DE UM BOX DISPERSOR. ... 25
FIGURA 2.5-6 - ALTERACAO DOS ATRIBUTOS DAS MARCAS PELO BOX
CONTROLADOR o 26
FIGURA 2.5-7 - MANUTENCAO DOS ATRIBUTOS DAS MARCAS PELOS FILTROS DOS
ARCOS ORIENTADOS 27
FIGURA 2.6-1 - MODELAGEM PFS/E-MFG DO SISTEMA DA FIGURA 2.4-1 PARA
PROCESSAMENTO MISTO DE DOIS TIPOS DE PECAS 30
FIGURA 3.2-1 - REPRESEN TACAO DE UM ARCO DE SINAL DE ENTRADA E EXEMPLO
DE SUA APLICACAQ c.oovcvssessmmmssssssssmmssssssesssssssessmsssssseessssssssmsemesoseomesses s s 34
FIGURA 4.3-1 - FLUXO DE DADOS ENTRE OS MODULOS DO CONTROLADOR.............. 43
FIGURA 5.3-1 - EXEMPLO DE UM GRAFO E-MFG .. 57
FIGURA 6-1 - HIERARQUIA DOS OBJETOS DO CONTROLADORcovmremrerssasisennenorsons 62
FIGURA 6.1.3-1 - ELEMENTOS COM EXPRESSOES CONDICIONAIS 65
FIGURA 6.1.3-2 - GATE DE DADOS COM EXPRESSAO CONDICIONAL 65

FIGURA 6.1.3-4 - APLICACAQ DO OPERADOR NOT 67

-4

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

FIGURA 6.1.3-5 - CONDICIONAL REPRESENTADO EM ESTRUTURA DE ARVORE.........68

FIGURA 6.1.3-6 - REPRESENTACAO DA ESTRUTURA DE DADOS DOS CONDICIONAIS 69

FIGURA 6.1.3-7 - AVALIACAO DOS CONDICIONAIS 71

FIGURA 6.2.3- TIPOS DE GATE 77

FIGURA 6.3-1: ESTRUTURA DE DADOS DE UMA LISTA SIMPLESMEN TE LIGADA........ 83

FIGURA 6.6.1-1 - ESTRUTURA DDE PARA O CONTROLADOR 90
FIGURA 6.7-1 - INTERFACE DE DEBUG DO CONTROLADOR 95
FIGURA 6.7-2 - CATXA DE DIALOGO DE CONTROLE 96
FIGURA 6.7-3 - EXEMPLO DE 'DUMP' DE PROPRIEDADES DO GRAFO oo 96
FIGURA 7.1-1 - MODELO GLOBAL DO PROGRAMA CONTROLADOR 97
FIGURA 7.2-1 - CICLO DE CONTROLE E ATIVIDADES DO GERENCIADOR DE MARCAS
E CONTROLADOR DE I/O - vre99
FIGURA I-1 - CONTROLADOR E-MFG - CRONOGRAMA....... 108
FIGURA II-A1 - GRAFO DA SEQUENCIA DE TESTES 1 109
FIGURA T-B1 - GRAFO DA SEQUENCIA DE TESTES 2 111
FIGURA II-C1 - GRAFO DA SEQUENCIA DE TESTES 3 - GRAFO DO PROCESSO.d......... 113

FIGURA II-C2 - GRAFO DA SEQUENCIA DE TESTES 3 - GRAFO DO CONTROLE......... 114

FIGURA II-D1 - ESTADO 1 & 115
FIGURA 0I-D2 - ESTADO 2 115
FIGURA TI-D3 - ESTADO 3 115
FIGURA III-1 - INTERFACE DO CONTROLADOR 117
FIGURA III-2 - CAIXA DE DIALOGO DE CONTROLE 118

FIGURA III-3 — CAIXA DE DIALOGO DE OPCOES DDE.... 118

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produ¢iio

Resumo

O controle de processos de manufatura flexiveis exige a utilizagdo de
ferramentas que permitam a modelagem e simulagio de sistemas produtivos € seus
algoritmos de controle. No entanto, atualmente existe uma barreira entre as etapas de
modelagem e simulacdo do sistema e a implementagio real do controle devido ao fato
de se utilizar técnicas diferentes em cada fase. O E-MFG ¢ uma ferramenta adequada
para a modelagem, simulacfio e especificagio do controle de Sistemas de Eventos
Discretos (e.g. sistemas flexiveis de manufatura). Neste trabalho, procura-se
especificar ¢ implementar um controlador programavel, cuja a estratégia de controle
€ descrita através de um grafo E-MFG bem como especificar uma linguagem textual

de programac#io para a descri¢éo de algoritmos de controle em E-MFG.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producéio

“Abstract”

The control of flexible manufacturing systems requires the use of tools for
modeling and simulating the production systems and their control algorithms,
However, there is a gap between the stage of modeling and simulation and the actual
implementation of the control strategy due to the use of different techniques in each
stage. The E-MFG is a proper tool for modeling, simulating and specifying the control
of Discrete Event Systems (e.g. flexible manufacturing system). The aims of this
work are the specification and implementation a programmable controller whose
control strategy is described through a E-MFG graph, as well as the specification of a
textual programming language for the description of control algorithms in E-MFG.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

1 - Introducdo

Em ambientes automatizados e integrados de produgdio identifica-se
claramente 3 niveis hierérquicos de controle da produgdo. (SANTOS FILHO, 1993)

O primeiro nive! é caracterizado pelo controle das varidveis continuas do
processo produtivo (e.g. velocidade de corte em uma industria de manufatura ou
controle de temperatura e pressdo em uma indiistria de processos). Para o controle dos
sistemas nesse nivel utiliza-se técnicas de controle de varidveis continuas
(controladores PID, I-PD, PI, ¢quagles de estado, Redes Neurais Artificiais, etc.) pois
essas varidveis sio regidas pelas leis fisicas e seu comportamento dindmico pode ser
analisado por modelos matematicos baseados em seu comportamento em fungiio do
tempo, através de equagdes diferenciais ¢ modelos de integragio numérica. A
implementagio desses sistemas de controle se faz, normalmente, através de sistemas
dedicados ou controladores logicos programaveis e em muitas situagdes através de
‘hardware’ dedicado, fornecido pelo préprio fabricante do equipamento que se deseja
controlar.

O segundo nivel corresponde a seqiiencializagio e o intertravamento das acdes
necessarias a realizagdo do processo produtivo. Portanto, estd intimamente ligado a
atividades de movimentaggo de materiais (gestéio da cadeia de suprimentos ou ‘supply
chain’ intemo da unidade produtora), carga e descarga dos pallets’, preparaco
(‘setup’) de maquinas e ferramentas, diagnose e reparo de falhas, supervisio e
coordenac¢do dos eventos de produgéo, bem como monitoragdo do sistema produtivo.
Logo, verifica-se que as regras de comportamento dindmico dos sistemas deste nivel
530 determinadas pelo homem, néo obedecendo a leis invariantes da Fisica, tal como
ocorre com os Sistemas de Varidveis Continuas (SVCs). Assim, a caracteristica
fundamental dos sistemas neste nivel é o fato da sua evolugio dinimica ser
determinada pela seqii€ncia de eventos ocorridos, sendo que estes nio possuem
necessariamente um instante de tempo preé-determinado para a sua ocorréncia. Esta
classe de sistemas, os Sistemas de Eventos Discretos (SEDs) nio podem ser
representados adequadamente através das técnicas convencionais aplicadas a
Sistemas de Varidveis Continuas, Devido a essa dificuldade, desenvolveram-se
modelos para esses sistemas fundamentados em Redes de Filas, autématos finitos,

modelos aigébricos (Algebra Min-Max) ¢ Redes de Petri. A implementacdo do

-8.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

controle neste nivel se d4 normalmente através de computadores industriais ¢ CLP’s,
de acordo com o grau de flexibilidade exigida do sistema. A natureza do controle
realizado neste nivel pode ser classificada como controle da seqliéncia e regras de
produgdo e portanto, estd intimamente ligado a organizagéio e execugfio do processo
produtivo.

O terceiro nivel de controle corresponde as atividades de programacdo de
produgéo, planejamento da produgdo e gestdo da cadeia de fornecedores (‘supply
chain’) da unidade produtora. Assim, de acordo com o nivel anterior, o
comportamento do sistema ¢ determinado pelo homem. No entanto, esses sistemas
apresentam uma necessidade de inteligéncia e flexibilidade ainda maior pois os
modelos necessitam adequar-se a restrigdes varidveis de produgio e suprimentos, e
gerar como saida uma seqiiéncia 6tima de ordens de produgdo ¢ pedidos de compra. A
modelagem dos sistemas neste nivel depende de fatores como escala ¢ tipo de
produgdo, bem como de fatores estratégicos de cada companhia, sendo portanto muito
dificil a obtengio de um modelo adequado baseado em uma unica técnica,
principalmente quando o objetivo ¢ unificar as etapas de planejamento e controle
aplicando-se uma ferramenta tnica para o desenvolvimento do sistema. Logo, para o
planejamento de produggo, por exemplo, a modelagem e otimizagdo desses sistemas
abrange técnicas baseadas em redes de filas, modelos de regras de inteligéncia
artificial, técnicas de identificagio do caminho critico de produgéio (e.g. grafos
PERT/CPM, entre outras) a fim de se estabelecer a melhor estratégia de produgio. A
implementagéio do controle neste nivel se da através de computadores, geralmente
maquinas com grande poder de processamento. Esse nivel corresponde ao nivel de
controle da estratégia de produggo.

As referéncias neste trabalho ao controle e flexibilidade de Sistemas
Integrados de Manufatura (SIM’s) ou mais genericamente a Sistemas Integrados de
Produg#io, se aplicam ao segundo nivel de controle descrito, isto &, ac controle da

sequencializagfo, das regras e execucio da produgio.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

1.1 - Automaciio da Manufatura e Sistemas Flexiveis de Manufatura

O processo de manufatura pode ser encarado como um conjunto de processos
de transformac&o de matéria prima que visa a obtengdo de um produto acabade que
satisfaca as especificagdes técnicas preestabelecidas. Identifica-se nesse processo dois
tipos de atividades que contribuem para a obtengfio do produto final: as atividades
mecAnicas repetitivas ¢ as atividades decisérias (de avaliagiio entre o inicio e o fim de
uma atividade, seqiencializagfio das atividades, avaliagdo da qualidade, enfim as
regras de produg#o).(SANTOS FILHO, 1993)

A fim de se automatizar esse processo pode-se adotar trés abordagens
distintas, de acordo com a natureza do processo: a automacdo fixa, a automagdo
programavel e a automagio flexivel.

A automagio fixa caracteriza-se pela automatizagdo de uma seqiiéncia do
processo produtivo, e estd fortemente associada a configuragio das maquinas e
equipamentos que compdem a linha. E caracterizada também por altas taxas
predutivas e uma baixa adaptabilidade a mudangas no processo (exigindo
normalmente longos intervalos de tempo de ‘serup’ para pequenas varia¢Bes no
produto, uma vez que pode implicar em alteragdes fisicas na configuragdo da linha e
componentes da maquina).

A automagio programavel é o passo seguinte 4 automagdo fixa, podendo-se
programar novos processos € portanto diminuir o tempo de preparagdo das maquinas.

Ja a automagfio flexivel implica na capacidade de se processar uma variedade
de produtos sem que haja perda de tempo com a adaptacdo do sistema durante a
mudanga de produtos, diferenciando-se da automacio programavel pela inexisténcia
de perdas de tempo com reprogramagfo e ‘setup’ das maquinas.

Assim, a flexibilidade de um sistema de manufatura pode ser avaliada em
fungdo da flexibilidade de alguns pardmetros (SANTOS FILHO, 1993):

e Flexibilidade da Maquina-Ferramenta (variedade de pecas que podem ser
processadas)

* Flexibilidade do sistema de transporte de materiais (habilidade de se manipular
pegas por diferentes rotas)

e Flexibilidade do sistema de computacional (grau de adaptabilidade do sistema para

a integracio de novas fungdes)

-10-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

e Flexibilidade funcional (capacidade de processamento de um mix de produtos e

variagdes de roteamento de produtos dentro de um mesmo processo)

1.2 - A aplicacdo do MFG na modelagem e controle de SIM’s

Modelar um sistema consiste em descrever o seu comportamento dindmico. O
modelo de um sistema pode representar os seus elementos e interconexdes (modelo
estrutural) ou o funcionamento de um sistema (modelo funcional).

Sistemas de manufatura possuem a caracteristica de ter o seu comportamento
dindmico definido pela transi¢io de estados resultante da ocorréncia de eventos
discretos, estando portanto o problema de controlar esses sistemas relacionado com a
supervisdo dos estados a fim de se assegurar uma determinada seqiiéncia de eventos
ou regra de producio.

A capacidade de representagdio formal e concisio das Redes de Petri
[(PETERSON, 1981), (REISIG, 1985), (REISIG, 1992)] as tomam adequadas para a
modelagem desses sistemas, assegurando a possibilidade de se representar a dindmica
desses sistemas (e suas regras de produgdio) de forma estrutural ¢ hierarquica.

Logo, 0 MFG ou Mark Flow Graph (HASEGAWA, 1984) sendo um grafo
derivado das Redes de Petri torna-se uma ferramenta ideal para a modelagem de
SIMs, pois além de possuir toda a representatividade das Redes de Petri 0 MFG
possui elementos inerentes ao modelo para a representagdio dos sinais da planta e dos

sinais de controle (os ‘gates’).

1.3 - Motivacio e Objetivos do Trabalho

O controle de processos de manufatura flexiveis exige a utilizagdo de
ferramentas que permitam a modelagem e simulagio de sistemas produtivos e seus
algoritmos de controle. No entanto, atualmente existe uma barreira entre a
modelagem ¢ simulagfo do sistema ¢ a especificagdo do sistema de controle devido
ao fato de se utilizar técnicas diferentes para a modelagem, simulagfio e controle (e.g.
utiliza-se Redes de Filas para a simulagio e ‘Ladder Diagram’ para o controle).
Neste contexto, a capacidade de representagdo do E-MFG (Enhanced Mark Flow
Graph) o torna uma ferramenta ideal pois permite a modelagem, simulagio e
especifica¢do do algoritmo de controle de SEDs (SANTOS FILHO, 1993). O objetivo

deste trabalho é especificar e implementar um controlador cuja a estratégia de

-11 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

controle € descrita através de um grafo E-MFG. Ser4 necessario, também, especificar
uma linguagem textual de programago para a descrigdo do algoritmo de controle em
E-MFG.

1.4 - Organizaciio do Trabalho
Este trabalho est4 organizado da seguinte forma;

e Capitulo 1 - E realizada uma introducdo a respeito da natureza dos sistemas de
manufatura e os problemas relacionados ao seu controle

* Capitulo 2 - Apresenta-se a técnica de modelagem de sistemas de eventos discretos
através do PFS/MFG e PFS/E-MFG.

¢ Capitulo 3 - Procura-se detalhar as estratégias de controle de sistemas produtivos
bem como analisar os requerimentos de controle desses sistemas ¢ a adequagio do
E-MFG ao controle desses sistemas.

¢ Capitulo 4 - Sdo apresentadas as especificagdes do controlador e analisadas as
alternativas de implementagéo do controlador

 Capitulo 5 - E apresentada a linguagem de programacio E-MFG Script

e Capitulo 6 - Procura-se especificar a estrutura de dados e a funcionalidade dos
mddulos do controlador

* Capitulo 7 - Procura-se detalhar a estrutura da implementagfo do controlador

* Capitulo 8 - Define-se os procedimentos para os testes do programa

 Capitulo 9 - Comentirios e Concluses

* Apéndice I - Apresenta o cronograma de desenvolvimento

* Apeéndice IT - Apresenta alguns dos testes de validagdo realizados

* Apéndice ITT - Apresenta 0 manual do aplicativo

* Apéndice IV - Apresenta o cédigo fonte do aplicativo escrito em Visual C++ 4.0

-12 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

2 - Modelagem de Sistemas Integrados de Manufatura

2.1 - Introducio

A capacidade de representacsio e a concisgo sio requisitos basicos de qualquer
ferramenta que se utilize para a modelagem e especificagio de controle de um SIM.
Neste contexto, as técnicas de modelagem de sistemas de eventos discretos derivadas
de Redes de Petri como o MFG e as suas extensdes como F-MFG, ou MFG F uncional,
(HASEGAWA; TAKHASHI, 1987) e o E-MFG (Enhanced Mark Flow Graph)
constituem uma classe de ferramentas com essas caracteristicas que permitem a
representaco do modelo global ou modelo estrutural-funcional do sistema (SANTOS
FILHO, 1993).

Neste capitulo pretende-se realizar uma introdugio 4 modelagem de sistemas
de eventos discretos através do PES/MFG (Production Flow Schema/Mark Flow
Graph) (MIYAGI, 1988), discutir as limitagdes do MFG para a modelagem de
sistemas que apresentam regras flexiveis de produgfio e, por fim, realizar uma
introdugéio 4 modelagem de Sistemas Flexiveis de Manufatura através do PFS/E-
MFG.

2.2 - Modelagem utilizando 0 MFG

O MFG (Mark Flow Graph) é um grafo bipartido seguro derivado de Redes de
Petri que permite a representacfio de sistemas de eventos discretos complexos (e.g.
Sistemas de Manufatura).

O grafo ¢ composto por elementos estruturais que representam as condigdes e
0s eventos associados ao processo que se deseja modelar. Os elementos estruturais

que compde o grafo estdo representados na figura 2.2-1.

-13-

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

Elementos Estruturais Basicos do MFG

| .

a - Box d - Transigio h - Box Temporizado
Te
: - i
b - Box com Marca ¢ - Porta Habilitadora & Transigfio i - Transigéo Tempotizada
—— q
¢ Arco Orientado {- Porta Inibidora e Transiglio

e RG22 b]
i

' Elemento Externo

£ - Box e Arco de Sinal de Saida
figura 2.2-1 - Elementos Estruturais do MFG

Os elementos estruturais representados na figura 2.2-1 possuem a seguinte
funcionalidade:

e Box: corresponde a uma condigdo relacionada com a disponibilidade de recursos
ou modo de operagdo do sistema (representado por um quadrado);

» Transi¢do: corresponde a um evento que causa uma mudanga no estado do sistema
(representada por uma barra vertical);

* Arco Orientado: elemento que relaciona um box e uma transigéio, definindo o pré
evento € o pés-evento de cada condigio (sdo representados por setas);

 Marca: representa a manutengo de uma condigfio (a existéncia de uma marca em
um box indica que esta condigdo esta satisfeita) e alocagiio das marcas em um
grafo constituem a sua marcagao;

* Porta: existem basicamente dois tipos de portas, isto €, as habilitadoras e as
inibidoras. As habilitadoras habilitam o disparo de uma transicio se o sinal de
origem corresponder ao nivel logico 1° e desabilitam o disparo da transi¢do se o
sinal de origem corresponder ao nivel légico ‘0’. Por outro lado as portas
inibidoras habilitam o disparo de uma transi¢io se o sinal de origem corresponder
ao nivel ldgico ‘0" e inibem o disparo da transicdo se o sinal de origem
corresponder ao nivel logico ‘1°. As portas podem ainda ser subclassificadas em
internas e externas sendo que as internas estdio sempre conectadas a um box onde

a presenga de marca indica nivel légico ‘1° e a auséncia nivel 6gico ‘0’; as portas
¥

-14-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

externas estdo associadas a um elemento externo ao modelo que gera um sinal
binério;

* Arco de Sinal de Saida: ¢ constituido por um arco conectado a um box que gera
um sinal bindrio para um elemento externo ao modelo, onde a presenca de marca
no box indica nivel logico ‘1’ e a auséncia nivel légico “0’;

» Elementos temporizados: a fim de se representar o tempo de duragio de processos
dispde-se de dois elementos temporizados:

* boxes temporizados: que retém a marca por um intervalo de tempo pré-
determinado (representados por losangos € uma constante de tempo);

* transi¢Oes temporizadas: que atrasam o seu disparo por um periodo de
tempo pré-determinado a partir do instante em que as condigdes de disparo
estdo satisfeitas. Se as condigSes nfo estiverem mais satisfeitas antes que
ocorra 0 disparo da transigfio esta passa a0 estado de desabilitada e a
contagem de tempo retorna ao zero.

Além desses elementos estruturais basicos foram propostas extensdes que se

baseiam em um agrupamento desses elementos e constituem os macro-elementos do
MFG funcional ou F-MFG ilustrados na figura 2.2-2.

Macro Elementos do MFG Funcional

& - Box Capacidade

— o=

T1 N N T2
b - Box Acumulador
| =
i\oﬂ
T1 N T2

¢ - Box Dispersor
figura 2.2-2 - Macro Elementos do F-MFG

Esses elementos permitem a modelagem de ‘buffers’ e operagdes de
agrupamento e desagrupamento de marcas (e.g. montagem e desmontagem de

‘pallets’) e sBo constituidos por:

-15-

Controlader E-MFG para Sistemas Integrados e Flexiveis de Produgfio

* Box Capacidade: o box capacidade (representado por um circulo) representa um
‘buffer’ com capacidade de armazenamento igual a N. Assim, a transigso T1 pode
disparar sempre que o nimero de marcas no box for menor que N e T2 pode
disparar sempre que existir alguma marca armazenada. Os gates' ou portas com
indice N possuem sinal l6gico ‘1’ na origem se o nimero de marcas no Box for
igual a N e 0s ‘gates’ ou portas com indice n possuem sinal légico 1 na origem
se existir alguma marca armazenada no box;

* Box agrupador: representa uma operagdo de agrupamento de N pecas. Assim a
transigdo T1 pode disparar sempre que o nimero de marcas no box for menor que
N e T2 pode disparar sempre que o numero de marcas for igual a N. Os ‘gates’ ou
portas com indice N possuem sinal logico “1” na origem se o numero de marcas no
Box for igual a N e os ‘gates’ ou portas com indice n possuem sinal 16gico ‘1’ na
origem se existir alguma marca armazenada no box;

* Box dispersor: representa uma operagdo de desagrupamento de N pegas. Assim a
transicdo T1 pode disparar sempre que o nimero de marcas no box for igual a zero
e T2 pode disparar sempre que o numero de marcas for maior que zero. Os ‘gates’
Ou portas com indice N possuem sinal logico “1° na origem se o nimero de marcas
no Box for ignal a N e os ‘gates’ ou portas com indice n possuem sinal logico <1’
na origem se existir alguma marca armazenada no box;

Com os elementos estruturais descritos ¢ posstvel modelar sistemas de eventos
discretos complexos e simular a evolugdo dos estados do sistema,

O estado do sistema modelado através do MFG ¢ dado pela disposigdo das
marcas no grafo (marcagio). A evolugdo das marcas no grafo ¢ determinada pelo
disparo das transi¢des ou eventos.

Uma transig8o é considerada habilitada para disparo se e somente se:

I - todos os boxes de entrada desta transicdo estiverem marcados

2 - todos os boxes de saida desta transi¢do estiverem sem marcas

3 - todas as portas habilitadoras internas ligadas nesta transigfio tiverem sinal
de origem ‘1’

4 - todas as portas inibidoras internas ligadas nesta transiciio tiverem sinal de

origem ‘0’

-16 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Uma transigfo é considerada disparavel se além de obedecer as condiges que
a tornam habilitada ela obedecer as seguintes condigdes:

1 - todas as portas habilitadoras externas ligadas nesta transigiio tiverem sinal
de origem ‘1’

2 - todas as portas inibidoras externas ligadas nesta transigfio tiverem sinal de
origem °0°

Se a transi¢do & disparavel ocorre o disparo de maneira imediata e instantdnea,
a menos que haja um conflito ou atraso de tempo (transi¢io temporizada ou box
temporizado). O disparo de uma transi¢do remove todas as marcas dos boxes de
entrada da transicfio e coloca marcas nos boxes de saida da transigéio, como ilustra a

figura a 2.2-3.

Dindmica de Disparo de Transi¢es e Tipos de Conflito

b - Box Conflito de Entrada ¢ - Box Conflito de Saida
figura 2.2-3 - Disparo de Transigiio e tipos de conflito

A figura 2.2-3 representa também um tipo de situagdo onde dois ou mais
eventos estdo ativados e a ocorréncia de um implica na desativagio dos outros. Em
outras palavras, a situagio de conflito ocorre quando existe a convergéncia ou
divergéncia de eventos mutuamente exclusivos. Nestas situagbes, existem duas linhas
de agdes que se pode seguir.

A primeira linha de ages se aplica quando os conflitos sdo inerentes ao
sistema e nfio ¢ interessante dar prioridade a um dos eventos. A acdo tomada neste

caso € ndo arbitrar o conflito e o evento que ser4 disparado ¢ sorteado aleatoriamente.

-17-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

A segunda linha de agdes se aplica quando se deseja arbitrar efetivamente o
conflito ¢ consiste em se impor uma dindmica de disparo ao sistema através de um
arbitro externo ao grafo conectado a0 grafo por portas habilitadoras ou inibidoras
exiernas ou através de um sub-grafo que descreve a estratégia de resolugdio do
conflito conectado as transicdes em conflito por meio de portas inibidoras ou

habilitadoras.

2.3 - Modelagem hierarquica utilizando o PFS/MFG

Com as estruturas existentes no F-MFG & possivel descrever o comportamento
de sistemas de eventos discretos complexos. No entanto, modelar uma complexa
planta industrial a partir de seu nivel maximo de detalhe ¢ uma tarefa ardua e sujeita a
muitas iteragdes em virtude de uma modelagem incompleta, visto que sempre deve-se
ter o nivel maximo de detalhe em todas as atividades que compdem o processo
produtivo.

No sentido de se facilitar a modelagem de sistemas complexos foi proposta
uma metodologia de modelagem hierdrquica para a modelagem de SIM’s, o
PFS/MFG (MIYAGI, 1988), baseada na técnica de Production Flow Schema (PFS),
que ¢ uma rede do tipo canal-agéncia adequada para a modelagem de sistemas
produtivos (REISIG, 1992).

No PFS tem-se basicamente 3 tipos de elementos estruturais, os elementos
atividade (representados por colchetes), os elementos distribuidores (representados
por circulos) e os arcos orientados (representados por setas). Os elementos atividades
representam os elementos ativos do sistema, ou seja aqueles que realizam alguma
atividade relativa & produggo, fransporte ¢ modificacio de itens. Os elementos
distribuidores sfio os elementos passivos do sistema e, portanto, ndo realizam
transformagdo de materiais sendo apenas capazes de armazenar itens que serfio
utilizados nas atividades. Por fim, os arcos orientados determinam as relagdes de
conexdo entre os elementos distribuidores e as atividades. Na figura 2.3-1 tem-se os

elementos estruturais basicos do PFS.

-18 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Elementos do PFS —'

Fluxo Secundirio

‘{Atl\lldade }_’
Fluxo Sew

a - Elemento Atividade

B »

b - Elemento Distribuidor
figura 2.3-1 - Elementos do PFS

A metodologia PFS/MFG estabelece a modelagem do fluxo principal de

produgédo e um detalhamento hierarquico das atividades e elementos de distribuicio

(substituindo-as gradativamente por sub-redes MFG). Por exemplo, pode-se

considerar uma planta composta por 3 magazines, uma célula de manufatura, uma

fresadora CNC e um veiculo auténomo de transporte (VAT ou AGV) que realiza o

fluxo de materiais entre a célula e a fresadora. A figura 2.3-2 apresenta uma

concepgdo estrutural do modelo e o modelo PFS correspondente € na figura 2.3-3

tem-se o detalhamento das atividades na fresadora.

-

Mag In

Mag In

Célula de Fresadora
O [Fadn]

Exemplo de Modelagem PFS

Mag Int Mag Out

[acd

a - Sistema Produtivo
Atividade na
e]_.O_.[Aﬁﬁm J—*O
Manufatura Fresadora CNC

\/Iag IV Mag Qut

AGY
b - Modelo PFS do Sistema Produtivo

figura 2.3-2 - Exemplo de modelagem em PFS

-19-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Prod ucio

Detalhamento de Modelo PES

Atividade no nivel
de controle

Atividade no nivel
Ferramenta I | Ferramenin 2 { Ferromenta 3 operacional

b - Atividade processa em nivel de controle e operacional
figura 2.3-3 - Detalhamento do modelo PFS das atividades na fresadora CNC

2.4 - Consideracdes quanto a Sistemas Flexiveis de Manufatura

A metodologia PFS/F-MFG apresentada na se¢do 2.3 deste capitulo propbe
uma abordagem hierarquica para a modelagem do sistema produtivo, o que contribui
significativamente para a obtencdo de um modelo de forma progressiva e estruturada.
No entanto, devido a auséncia de flexibilidade modeladora do MFG a obtenc¢do de um
modelo através dessa ferramenta ainda pode ser muito dificil dependendo do grau de
complexidade e flexibilidade do sistema. Essa auséncia de flexibilidade modeladora
do F-MFG pode ser ilustrada pelo seguinte exemplo: considere um sistema que
processa 2 tipos de pegas (A e B) composto por um robd manipulador, uma maquina
de comando numérico e dois magazines (um de entrada e um de saida), como o

ilustrado na figura 2.4-1.

l l Maquina Ferramenta

CNC [—I

Mag In Mag Out
figura 2.4-1 - Exemplo de Sistema Flexivel de Manufatura

-20-

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

Nesse sistema, existem duas alternativas de processamento das pecas: em lotes
ou misto.

Quando se processa as pegas em lote, primeiro se processa as pecas de um
tipo, faz-se um ajuste da maquina para a troca do programa de usinagem e entio

processa-se a segunda categoria de pegas. A figura 2.4-2 apresenta 0 modelo F-MFG

do processamento em lotes.

P/mgm

Carregamento | Pega preparada

Robo Disponivel

figura 2.4-2 - Modelo F-MFG para a produgio de pecas em lotes

Tomando a segunda alternativa, ou o processamento misto das pegas, torna-se
necessario indicar os dois processos no modelo, pois é necessario saber qual pega se
estd processando para o acionamento do programa de usinagem correto. A figura 2 4-
3 apresenta o modelo F-MFG do sistema para o processamento misto dos dois tipos

de pecga.

1

Descarregamente

Disponfvel

Carregamento Pega B

preparada

Mag In - Mipjina Mag Out

Disponivel

figura 2.4-3 - Modelo F-MFG para a produgiio de dois tipos de pecas simultaneamente

-21 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

Nota-se que na figura 2 4-3 existe uma duplicagdo de diversos elementos do
modelo em virtude da necessidade de se representar os dois processos, tornando-o
mais complexo. Pode-se notar que o grau de complexidade do modelo cresce muito
com o grau de flexibilidade do sistema.

No sentido de se adicionar uma maior flexibilidade & modelagem de SEDs foi
proposta uma extensfio a0 MFG onde se adiciona regras de disparo adicionais is
transi¢Bes ¢ atributos &s marcas, individualizando-as (SANTOS FILHO, 1993). Esse
modelo foi chamado de “Enhanced Mark Flow Graph’ ou E-MFG.

2.5 - Modelagem utilizando 0 E-MFG

O E-MFG possui basicamente os mesmos tipos de elementos estrufurais
basicos do MFG. No entanto, foram adicionadas propriedades a esses elementos no
sentido de se elevar a capacidade de representagdo do grafo. Assim, tem-se os
seguintes elementos estruturais bdsicos:

* as transigdes: indicam a ocorréncia de eventos e podem possuir inscrigdes
que representam regras adicionais restritivas para a evolugdo dindmica do
sistema, estas regras podem observar o estado global do grafo para
autorizar ou ndo um disparo de transi¢do;

* os boxes: indicam as pré e pos condi¢des para a ocorréncia de um evento;

® as marcas: indicam a manuten¢io de uma condicio e podem ser
individualizadas por atributos;

* as portas: habilitam ou inibem a ocorréncia de um evento, podendo ter
inscrigdes representando condigdes relacionadas com os atributos das
marcas a fim de habilitar ou inibir a ocorréncia de um evento;

® 0s arcos orientados: estabelecem a relagdo causal entre os eventos e as
condigdes ¢ podem conter inscrigdes que controlam a manutenco dos
atributos das marcas realizando uma filtragem seletiva desses atributos;

* arcos de sinal de saida: podem transmitir informagdes ao meio externo
relativas ao estado do atributo de uma marca ou ao estado de uma
condicdo.

Como j& foi mencionado, as marcas no E-MFG sdo acompanhadas de um

conjunto de atributos que as caracterizam individualmente. A esses atributos podem

estar associadas informagGes referentes ao produto, processo e ao controle. Foi

-22.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

proposto que esses atributos fossem representados por um vetor de valores inteiros ou
logicos (e portanto referenciados através de indices), conforme a representagiio da
figura 2.5-1a (SANTOS FILHO, 1993). Nesta representagiio pode-se considerar que
um atributo com valor nulo (zero) indique a auséncia desse atributo. No entanto,
devido a algumas caracteristicas desejaveis aos sistemas de controle ¢ 3§ especificagido
do controle através de uma representagdo textual, conforme a discussdo na secdo 3.2,
propde-se neste trabalho que os atributos das marcas sejam representados por uma
lista de atributos de tipo pré declarado (e.g. valores inteiros, ‘strings’ e valores
booleanos), sendo referenciados através de nomes mnemonicos, conforme a figura
2.5-1b. Deve-se ressaltar que essa alteragio de representagiio néo afeta a dindmica do
grafo, alterando apenas a especificagdo do controle através de uma descrig#io textual e

a implementagio de um controlador baseado nesta descricdo.

| Marca = <al,a2,23,a4> |
| Exemplo: l
1 al = tipo da peca :
| a2 = encomenda X
! .

1 a3 = maquina :
@4 = codigo de controe |

a - Representagio da Estrutura da Marea no E-MFG original

[
;

1

: <<

) Tipo = Integer

: Encomenda = String

X Maquina = Integer

: ProcessTime = String
i Pronta = Boolean

1

1

b - Exemplo de Representagdo da Estrutura da Marca no E-MFG modificado
figura 2.5-1 - Estrutura da Marca Individual no E-MFG original e modificado

Ainda em relagdo a marcagfo no E-MFG, ¢ necessario definir o conceito de
fmarca composta, que corresponde ao agrupamento de diversas marcas individuais em
uma unica marca individual, que mantém a estrutura das marcas que a compde. Isso
pode ser obtido associando 4 marca individual composta um atributo que representa
um cddigo de controle para a composi¢o conforme o exemplo da figura 2.5-2, Esse
tipo de marca pode ser utilizada para representar o agrupamento e desagrupamento de

pegas e componentes nos processos industriais,

-23-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

Marcas Individuais
A AT Marca Individual
Composta
_ Composi¢io {o-Groupo1}
{002,ClienteX,004,-} de Marcas
Grupol = (
{001,ClienteX,003,-}
{:} {002,ClienteZ,001,-} ;002,C]ienteX,004,-}
+
{002,CliemeZ.001,-})
Marca definida por:
Marca = {CodPega, Encomenda, Maquine,Cadigo de Controle}
onde
;:dl’ew = Intloger
Entomenda = String
Miquina = knteger
Cédigo de Controle = String
=

figura 2.5-2 - Composiciio de Marcas no E-MFG

Outro aspecto relevante do E-MFG é a extenséo da fuﬁcionalidade dos macro-

elementos do F-MFG. No E-MFG os macro elementos possuem as seguintes

caracteristicas:

Box Capacidade: esses elementos modelam ‘buffers’ para o armazenamento
temporario de itens. No E-MFG, esses elementos também devem possuir um
metodo de acesso ou saida das marcas, pois como estas apresentam caracteristicas
individuais, a ordem de saida passa a ter importincia. Sgo definidos dois métodos
de saida para as marcas LIFO (‘Last In First Out "), onde as marcas sdio
armazenadas como em uma pilha e FIFQ (‘First In First Qut), onde as marcas sdo

dispostas como em uma fila (ver figura 2.5-3).

‘ig

Box Capacidade
N

FIFO

:>\‘/,

LIFO

figura 2.5-3 - Representaciio do Modelo FIFO e LIFO de um Box Capacidade

-24-

Controlador E-MFG para Sistemas Integrados e Flesiveis de Produgiio

¢ Box Agrupador: esses elementos modelam atividades de agrupamento de
pecas (e.g. palletizacdo). Ao agrupar as marcas em uma unica marca de

saida esse elemento realiza a composigdo de marcas (figura 2.5-4).

A {001,ClienteX,003,-}

<~

O {002,ClienteX,004,-}

{:} {002,ClienteZ,001,-}

<:> {-,-~,Groupol }

Grupol =(
{001,ClienteX,003,-}

Box Agrupador "

{002,ClienteX,004,-}
+
{002,ClienteZ.001,-})

figura 2.5-4 - Modelagem de um Box Agrupador

¢ Box Dispersor: esses elementos modelam atividades de desagrupamento de pegas
(e.g. despalletizagdo). Ao desagrupar uma marca composta em diversas marcas de
saida esse elemento pode realizar dois métodos FO (‘First Out”) ou LO (‘Last
Out’), pois aqui € importante a ordem de desmontagem ou desagrupamento da

marca individual composta (figura 2.5-5).

f,::} {002,ClienteZ,001 -}

+

O {002,ClienteX,004,-}
O n t

§---,Gronpol} A {001,ClienteX,003.-}
Box Dispersor

Grupol = (
{001,ClienteX,003,-}
+
{002,ClieneX,004,-}
+
{002,ClienteZ,001,-})

figura 2.5-5 - Modelagem de um Box Dispersor

-25.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgioe

Um outro elemento importante no E-MFG & o Box Controlador ou
Transformador (representado por um quadrado com um losango em seu interior), este
box possui um conjunto de regras de controle descritas através de estruturas SE ...
ENTAO... SENAO (IF-THEN-ELSE). Estas regras sdo regras de produgio que
observam o estado atual dos elementos do grafo (e.g. valores dos atributos das
marcas) e caso estejam satisfeitas executam alguma atribuigio de valores aos

atributos de uma marca, esta dindmica ¢ ilustrada na figura 2.5-6.

Box Controlador

se Pega = 001
entio
Maquina = 003

Box Controlador

€
se Peca = 001

entio
Maquina = 003

Marca={Pega, Cliente, Pedido, Mé4quina} Box Controlador

® ={001, ClienteX, 222, -} =
@ ={001 . ClienteX, 222, 003} se Peca =001
entéo
Maquina = 003

figura 2.5-6 - Alteragio dos atributos das marcas pelo Box Controlador

O mecanismo de alteragio dos atributos das marcas através dos boxes
controladores pode ser chamado de alteragfio condicional. O segundo mecanismo de
manutencdo dos atributos das marcas ¢ a filtragem seletiva dos atributos relevantes
ao proximo estado do grafo. Este processo de filtragem seletiva ¢ realizado pelos
arcos orientados, que podem permitir ou ndo a passagem de determinados atributos
para o proximo estado. O mecanismo de filtragem seletiva e a representagdo dos

filtros nos arcos orientados estio ilustrados na figura 2.5-7.

-26-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

O mecanismo de filtragem seletiva nos arcos orientados ¢ especialmente
inferessante para se garantir a integridade da informagdo carregada pela marca em
seus atributos. Foi proposto que quando uma transicdo disparasse os atributos das
marcas pertencentes as pré-condigGes passassem pelo processo de filtragem seletiva e
fossem entdio compostos através de uma operagfo légica (AND, OR, XOR) ou
algebrica(+,-) de acordo com a sua natureza (SANTOS FILHO,1993). No entanto, a0
se adotar essa estratégia pode-se observar que ao se disparar um dado evento onde
ndo existe apenas uma {inica marca com um determinado atributo apés a filtragem
seletiva dos atributos das marcas que pertencem a pré-condicdio, o disparo da
transigdo alterara o valor do atributo. Isto exige um cuidado muito maior por parte
do projetista do sistema para se garantir que a informagfo carregada por esse atributo
seja sempre coerente. Assim, neste trabalho propde-se¢ que o projetista adote a
seguinte abordagem: especificar claramente nos filtros dos arcos orientados quais
atributos so relevantes para o préximo estado (ndo permitindo dessa forma a geragdo
das inconsist&ncias mencionadas) e apenas realizar uma alteragdo do valor de um

atributo em um box controlador (onde essa alteragiio ¢ explicita),

O .
L .
> > O
~MAquima,~EAN ~Méquina,~EAN
O
Pedido, Méquina Pedido,Mbquina
®—=5 s

-
marca = {Pega,Pedido,Méquina,Cliente,EAN,Qualidade} . Legenda dos Filtros dos Arcos
O ={-- - ClienteX 7891234567890 -} Passa Todos =~

Niio Passa Todos = i

Passa Awib= At

]
={=5= - ,OK_Level5} ;
={000001 ,- ,012 »~-1234567890123 ,OK} I'

={-.1001 ,022 Estamparia .- ~}

C00 0O

={000001,1001 ,022 ,ClienteX ,7891234567890 ,0K }
figura 2.5-7 - Manutencio dos Atributos das Marcas pelos Filtros dos Arcos Orientados

-27-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Tendo em vista as alteragBes nos elementos estruturais do grafo ¢ natural que
a regras de disparo de transigdes do E-MFG também sejam uma extens3o das regras
do MFG, existindo apenas algumas condiges adicionais que devem estar satisfeitas
para a efetivagdo do disparo de uma transicso.

As regras de disparo de transigdes sio resolvidas de acordo com uma
hierarquia, correspondendo a trés niveis de decisdo:

* o primeiro nivel corresponde as restricdes adicionais de disparo, ou as
fungdes 6gicas agregadas as transic®es, necessérias i representagio de estratégias de
controle especificas. Essas regras so representadas pelas inscrigdes nas transigdes,
conforme discutido anteriormente. Se nfio existirem inscrigdes em uma transigdo,
entdo ndo existem regras adicionais que limitam o seu disparo. Uma transi¢do que
ndo possui regras adicionais ou aquela que apresenta essas regras satisfeitas &
denominada transi¢iio em prontidio:;

* o segundo nivel corresponde s regras de habilitagio de disparo que
constituem as mesmas regras validas para o MFG. Assim, uma transigio ¢
considerada habilitada para o disparo se for uma transi¢do em prontiddo e satisfizer as
seguintes condigdes: todas as pré-condigdes estio satisfeitas (marcagdo nos boxes de
entrada), todas as pds condigdes estdio satisfeitas (auséncia de marcacfio nos boxes de
saida), ndo existe porta habilitadora interna ou externa conectada a esta transigio que
esteja em estado de desabilitagiio, nio existe porta inibidora interna ou externa
conectada a esta transi¢io que esteja em estado de inibicdo.

* 0 terceiro nivel corresponde as regras de disparo e envolvem a resolucéo de
conflitos e a verificagdo das regras de filtragem seletiva dos atributos das marcas
pelos filtros dos arcos orientados.

Uma transigfo habilitada ¢ denominada disparével quando possui as condigdes
de conflito resolvidas. Uma transigio disparavel dispara imediatamente, h4 menos
que existam atrasos de tempo devidos a elementos temporizados.

No E-MFG, assim como no MFG pode-se optar por ndo arbitrar um conflito
(disparando aleatoriamente uma das transi¢des), ou quando se deseja arbitrar
efetivamente o conflito pode-se proceder das seguintes formas:

* impor uma dindmica de disparo ao sistema através de um rbitro externo ao

grafo conectado ao grafo por portas habilitadoras ou inibidoras externas;

~28-

Controlader E-MFG para Sistemas Integrados e Flexiveis de Produciio

* impor uma dindmica através de um sub-grafo que descreve a estratégia de
resolugfio do conflito conectado as transigdes em conflito por meio de portas
inibidoras ou habilitadoras;

¢ definir a transigio disparavel através de portas inibidoras ou habilitadoras

com ou sem inscrigdes provenientes do préprio box-conflito.

2.6 - A aplicagio do PFS/E-MFG i modelagem de Sistemas Flexiveis de
Manufatura

A metodologia PFS/E-MFG é uma extensio da metodologia PFS/MFG
apresentada na segéo 2.3. A principal diferenga entre as duas metodologias reside no
fato de no PFS/E-MFG o sistema final est4 descrito através de um grafo E-MFG. No
sentido de se manter a caracteristica hierdrquica da modelagem foi proposto que a
estrutura da marcagdio fosse sendo detalhada na medida em que se avanga na
modelagem dos diversos niveis hierarquicos (SANTOS FILHO, 1993). A figura 2.6-1
apresenta um exemplo de modelagem através do PFS/E-MFG do sistema descrito na

seqdo 2.4 e figura 2.4-1.

-29 .

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

Mag In Mag Out

Rob6
a ~ Modelo PFS do Sistema

- (o]«

Méquina Pronta

N

Processa _Q
Pega
Pega Pronta Mﬂg ut

Descurregamento

marca = {-
H Robé Disponivel

b - Detalhamento E-MFG/PFS do Sistema

Méquina
Disponivel

marca = {Pega}
onde << Pgga = String>>
®-

S=y A} Robo Disponivel
©-= (B

¢ - Modelo E-MFG do Sistema
figura 2.6-1 - Modelagem PFS/E-MFG de sistema da figura 2.4-1 para processamento misto de

dois tipos de pecas

-30-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

3 - Arquiteturas e Especificagiio de Controle em um Sistema Flexivel

de Manufatura
3.1 - Arquiteturas de Controle

Existem duas classificagdes basicas para a arquitetura de um sistema de
controle: o controle centralizado € o controle distribuido. Cada uma dessas
implementagdes traz vantagens e desvantagens de acordo com a aplicag8o em questiio
e portanto nenhum desses paradigmas sera adotado como requisito de arquitetura do
controlador. No entanto, uma breve discussdo a respeito de quais sdio as principais
caracteristicas de cada abordagem se faz necessdria a fim de mostrar que a
aplicabilidade da metodologia PFS/E-MFG para a modelagem e especificagio do
controle ndo esta ligada a nenhum desses paradigmas, sendo adequada a sua

utilizago nas duas modalidades de implementago.

3.1.1 - Controle Centralizado

O controle centralizado ¢ caracterizado pela concentragio de toda a tomada de
decisdo e supervisdo do estado geral do processo produtivo por um tnico controlador
(CLP, ou computador industrial). Essa implementag3o possui a vantagem de se ter
disponivel nessa miquina toda a informagfio relevante do processo produtivo. No
entanto, a medida que o porte do sistema aumenta o gerenciamento de todas as
informagdes comega a se tornar extremamente complexo, pois a todo momento deve-
se olhar para ¢ estado global da planta em seu nivel de maior detalhe. Portanto o
modelo utilizado deve estar totalmente detalhado. Assim uma metodologia ‘top-
down’, como o PFS/E-MFG, ¢ de grande valor para a obtengdo de um modelo correto
para o sistema. Através dela pode-se dividir o problema em médulos e resolvé-los
separadamente, aumentando assim a precisio do modelo de cada subsistema.

Um cuidado que se deve tomar em relagdio ao controle centralizado é o fluxo
de informagdes na via de dados, pois dependo da arquitetura desta, ela pode ficar

congestionada, degradando a performance do sistema e até inviabilizando o controle.

-31-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

3.1.2 - Controle Distribuido

Existem duas abordagens para o controle distribuido: o controle simplesmente
distribuido e o controle hierdrquico distribuido.

No controle simplesmente distribuido, a divisio da tomada de decisgo é feita
entre os diversos modulos, que se comunicam entre si sem regras de comunicagio
pré-determinadas (todos os médulos podem se comunicar com todos os médulos).

O controle hierdrquico distribuido ¢ caracterizado pela divisdo da tomada de
decisdo entre os diversos sub-sistemas e supervisdo do estado geral do processo
produtivo entre diversos niveis hierdrquicos de controladores (CLP’s efou
computadores industriais). Essa implementagio possui a vantagem de se ter em cada
maquina apenas a informagdo relevante a parte do processo produtivo que ela visa
controlar. Assim, pode-se garantir um melhor gerenciamento de informagdes
independentemente do porte do sistema. Portanto, passa-se a utilizar modelos que
possuem apenas o nivel de detalhe relevante para o nivel hierarquico que se estd
controlando. Uma metodologia ‘top-down’ como o PFS/E-MFG permite a obtengiio e
identificaciio dos diversos modelos necessarios. Através dela pode-se dividir o
problema em modulos e resolvé-los separadamente, identificando com precisio do
modelo de cada subsistema.

Quando se utiliza 0 controle hierarquico distribuido deve-se evitar o fluxo
vertical de informagdes desnecessdrias na via de dados, utilizando quando possivel
vias independentes de dados para o nivel de controle direto (ou nivel de agdes) e os

niveis de supervisdo (ou nivel de tarefas).

3.2 - Aplicabilidade do E-MFG ao controle de Sistemas Flexiveis de Manufatura
A viabilidade técnica e a performance de qualquer sistema de controle
depende fundamentalmente da disponibilidade de um modelo que traduza de modo
preciso as caracteristicas dindmicas do sistema controlado. No capitulo 2, foi
mostrada a adequagio do E-MFG a modelagem de sistemas flexiveis e integrados de
manufatura. Sob o ponto de vista do controle desses sistemas, o E-MFG apresenta a
vantagem de possibilitar a representagfio dos sinais de controle e vias de dados através
de arcos de sinal de saida e ‘gates’ de entrada, que sdo elementos inerentes ao
modelo. Do mesmo modo, observando sob o prisma do controle distribuido, a
metodologia PFS/E-MFG, permite uma facil identificagdio dos niveis hierdrquicos de

-32-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

controle e suas interdependéncias, facilitando a especificagdo do algoritmo e
informagdes de controle necessarios em cada nivel hierarquico. Isso ndo impede, no
entanto, a obtencgéio de um modelo global para a realizagdo do controle centralizado
(especialmente em instalagdes de pequeno porte onde o fluxo de informagdes na via
de dados nio € um pardmetro critico).

Também ¢ de fundamental importincia rever neste topico as mudangas
propostas na estrutura do E-MFG neste trabalho e o E-MFG original (SANTOS
FILHO, 1993).

Dentro do conceito do E-MFG original, cada marca possui um vetor de
atributos referenciados por indices, sendo que a existéncia de um dado atributo
depende do seu valor ser diferente de nulo. O contetido de cada atributo seria
representado sempre por um nimero inteiro ou valor logico.

Neste trabalho propde-se que:

* a fim de se aumentar a clareza de representagdo dos atributos do E-MFG, os
atributos das marcas em um dado nivel hierarquico sejam referenciados por um nome
ou ‘label "

* o conjunto de todos atributos possiveis para cada nivel hierarquico seja pré-
declarado, e todas as marcas desse nivel hierdrquico herdem essa estrutura. Se um
atributo na marca apresentar valor nulo este pode ser considerado inexistente.

¢ cada atributo seja associado a um tipo de dado, que no escopo deste
trabalho podem ser valores inteiros ou strings.

Outra mudanga de concepgdo em relagdo a0 E-MFG originalmente proposto
estd na definicido de um critério para a composi¢io de atributos de marcas.
Originalmente, previa-se a utilizagdo de uma operaggo légica (AND, OR, XOR, etc.)
ou algébrica (+,-, etc.) para compor os atributos da marca que ird para 0 box que
representa a pos-condi¢io de um evento a partir dos atributos das marcas que contidas
pelos boxes que representam a pré-condigio de um evento.

No entanto, essa abordagem s6 faz sentido quando se tratam de atributos
binarios ou codificagbes binarias de atributos. Isto exige um cuidado muito maior
por parte do projetista do sistema para se garantir que a informagdo carregada por

esse atributo seja sempre coerente.

-33-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

Neste trabalho propde-se que o projetista deva especificar claramente nos
filtros dos arcos orientados quais sdo os atributos relevantes ao préximo estado, ndo
permitindo a geragfo de inconsisténcias no estado seguinte.

Tendo em vista a necessidade de integragdo entre o programa controlador € os
demais sub-sistemas que compdem a planta, é interessante acessar dados referentes ao
processo externos ao grafo. Esses dados podem ser entiio utilizados tanto nas
atribuigBes, quanto nas condigdes booleanas inscritas nos elementos do grafo. Neste
sentido, propde-se a inclusdo de elementos de entrada de dados no grafo (valores
inteiros ou ‘strings’). Esse elemento passa a ser descrito como um arco de sinal de

entrada de dados (representado na figura 3.2-1a).

[“Elemento |

Elemento
| _ Eitemo 1

Varidvel
a - Representacéio de um Arco de Sinal de Entrada

| deRadio Frequéncia !

R \<— BarCodel

BarCode2

SetDestiny
—>]:storage :l

RequestTransport

se BarCodel = B09
entfo

Warchouse = 009,
StoragcArea = B;
Location = BarCode2;
sendo

Warehouse = 001,
StorageArea = BarCodel;
Location = BarCode?2;

b - Exemplo de Aplicagio de um Arco de Sinal de Entrada

figura 3.2-1 - Representacio de um arco de sinal de entrada e exemplo de sua aplicacio

-34-

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producfio

As vantagens trazidas pelas propostas deste trabalho séo:

* maior capacidade de representagfio da marca e facilidade de interpretagio do
modelo, permitindo dessa forma a representagiio de estados da marca em linguagem
natural sem a necessidade de se recorrer a tabelas de codigos.

e maior alinhamento com as tendéncias atuais de rastreabilidade e
identificagdo de materiais, pois a representagfio de ‘strings’ como atributos permite a
utilizagdio de cédigos alfanuméricos, tais como cédigos de barras, como parte do
modelo.

¢ maior alinhamento com os recursos de tecnologia de informacfio atuais,
especialmente com a tecnologia de bancos de dados, que sdo aplicados em
praticamente todas as aplicagdes industriais, pois permite a descrigio dos atributos
das marcas através de tabelas de bancos de dados relacionais, uma vez que se
identifica a priori todos os tipos de dados e representatividade desses dados de
maneira univoca.

* maior facilidade para se garantir no modelo a coeréncia de informagdes que
sdo passadas de um estado para o outro, pois todos os atributos que devem ser
mantidos devem ser claramente especificados nas inscri¢des dos arcos orientados.

¢ possibilidade de se utilizar ‘abels’ mnemodnicas para os atributos,
conferindo uma maior facilidade na utilizagdo destes ‘abels’ para se especificar as
condi¢des ¢ atribuigdes inscritas nos elementos do grafo;

» possibilidade de uma maior integragiio com fontes de dados externos ao

grafo, por meio dos arcos de sinal de entrada (vide exemplo na figura 3.2-1 b).

3.3 - Especificaciio de sistemas de controle através do E-MFG

Para se especificar o algoritmo de controle através do E-MFG, é necessario
que o modeio contenha apenas elementos E-MFG para o médulo do nivel hierarquico
que deseja-se controlar (caso se esteja utilizando uma metodologia “top-down™ como
o PFS/E-MFG, o sub-grafo que representa 0 médulo que esta sendo controlado deve
estar totalmente detalhado).

Por outro lado, o grafo que representa o sistema de controle deve gerar e ler
sinais de controle apenas e tdo somente através de portas (‘gates’) de entrada e saida,

impossibilitando dessa forma, o fluxo vertical de marcas. Este procedimento

-35.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgcio

preserva a representatividade unica dos atributos da marca em cada nivel de controle
e evita o problema de composi¢io de atributos de marcas que apresentam diferentes
niveis de detalhamento dos atributos.

Dessa maneira, uma linguagem de programac3io E-MFG (e portanto uma
linguagem formal de especificagio de controle) deve ser orientada de modo a manter
a coeréncia dos grafos em cada nivel hierarquico.

Assim, a descrigdo do algoritmo de controle deve possuir um formalismo
rigido para a representag@o dos elementos e conexdes do grafo. Por outro lado, deve
ser flexivel para se adaptar aos novos elementos tecnoldgicos que sdo introduzidos na
indiistria. Portanto, apesar da rigidez de sintaxe requerida para uma descri¢éo formal
do grafo, a descrigdo dos elementos de 1/0O (gates) deve ser flexivel quanto aos
pardmetros requeridos para se identificar a origem ou o destino do sinal de controle.
Assim pode-se abranger o maior numero possivel de protocolos e sistemas de
informag8io € permitir que a sintaxe da linguagem acompanhe a ripida evolugdo
tecnologica existente hoje, especialmente no que diz respeito a tecnologia de
informag#o.

Adotando essa abordagem na especificagio de uma linguagem de
programacio E-MFG, tem-se a certeza que um modelo de controle j4 utilizado em um
sistema produtivo sofrerd pouco ou nenhum impacto devido a uma evolugfio
tecnologica na transmissiio e coleta desses dados. Desta maneira, se exigira uma
quantidade minima de esforgo (homens/hora) para revalidar o programa de controle

dentro do novo ambiente.

-36-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

4 - Controlador E-MFG
4.1 - Especificagdes

O propésito de um controlador para um Sistema Integrado e Flexivel de
Produc#io no nivel de controle da seqiiencializagfio e execugdo da produciio é garantir
a ocorréncia dos eventos de produgfo na ordem adequada. Ou seja, obedecer as
restri¢des dindmicas impostas pelo projetista do programa de controle, ou regras de
produgfo, bem como realizar a interface com os sistemas do chio de fabrica e os
sistemas estratégicos da empresa.

Portanto, tendo identificado as necessidades do sistema de controle tem-se o
seguintes objetivos para o projeto: '

¢ Especificar uma lingnagem de programacio do controlador;

¢ Especificar 0s requisitos de projeto para o controlador;

¢ Desenvolver o programa controlador.

Tomando por base esses objetivos, bem como a discussio quanto a
modelagem e o controle de Sistemas Flexiveis e Integrados de Produg#o nos capitulos
2 e 3 deste trabalho, o controlador ¢ a sua linguagem de programacio devem
cumprir minimamente, 0s seguintes requisitos:

¢ receber a estratégia de controle descrita sob a forma de um grafo E-MFG,

descrito de forma textual de acordo com o EMFG- Script especificado no
capitulo 5;

e permitir a interface com os sistemas do chdo de fabrica e os sistemas

estratégicos da empresa através de um método padrio;

¢ rodar em um ambiente padrio de indistria;

* minimizar o impacto de avangos ¢ mudangas de tecnologia no cédigo ou

programa de controle;

 desenvolvimento orientado a objetos do codigo do controlador e seus

modulos a fim de se facilitar a sua manutencgo e possibilitar a adicio de
novas funcdes ao controlador sem provocar grandes impactos nos demais
moddulos do programa,

* baixo custo do conjunto plataforma e sistema operacional utilizados;

-37-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

4.2 - Andlise de Alternativas

Com base nas especificagdes do item 4.1 tem-se dois grupos de alternativas
para o desenvolvimento do controlador. O primeiro grupo constitui nas opgdes de
Hardware e Software bésicos (plataforma e sistema operacional) onde o sistema de
controle sera desenvolvido e o segundo grupo trata da estratégia de desenvolvimento

ou seja a arquitetura do programa ¢ a estrutura de dados.

4.2.1 - Plataformas de Hardware/Sistema Operacional

Tendo em vista os requisitos do sistema restringe-se o conjunto de
possibilidades de hardware e sistema operacional a duas arquiteturas basicas. Sendo
essas:

o Arquitetura RISC/UNIX(e.g. RS 6000/IBM AIX): Nesta arquitetura existem um
grande numero de processadores e versdes do sistema operacional. E um tipo de
plataforma de custo relativamente alto consolidada na indiistria devido a grande
velocidade dos processadores RISC e a confiabilidade dos diversos sistemas
operacionais utilizados. No entanto, nfio existe uma posig¢do clara de qual conjunto
processador/Sistema Operacional se destaca como lider de mercado, sendo esta
escolha muito dependente das opgBes de software existentes para cada tipo de
industria (e.g. O CATIA ¢ uma solugdo de CAD/CAM cuja a plataforma de
desenvolvimento € baseada em RS6000/AIX). Outra desvantagem ¢ a dificil
gerenciamento do ambiente Unix e o alto custo de treinamento do pessoal
envolvido com o sistema. .

o Arquitetura Intel/Microsoft Windows 95/NT: Esta arquitetura tem se expandido
com grande velocidade no mercado substituindo maquinas RISC em diversas
aplicagdes principalmente devido ao grande aumento da velocidade de
processamento dos processadores Intel ¢ a familiaridade de interface fornecida
pelo Windows 95/NT, sendo o Windows 95 o padrio mundial em computadores
pessoais. Estas maquinas sdo de custo inferior a maquinas RISC, podendo assim
como estas Ultimas, ser multiprocessadas quando se utiliza o Windows NT. A
menor necessidade de treinamento ¢ a facilidade de gerenciamento destas estacdes
séo as vantagens dessa plataforma. No entanto, esta ¢ uma tecnologia que ests se

consolidando apenas recentemente na indastria.

-38-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

Na tabela 4.2.1-1, tem-se uma andlise comparativa entre essas duas

plataformas:
Tabela 4.2.1-1: Comparacio entre as plataformas de Hardware e Software
Plataforma Vantagens Desvantagens
RISC/UNIX ¢ plataforma ja e alto custo do hardware

(e.g. RS6000/IBM AIX)

consolidada no mercado
diversas solugdes de
software para cada tipo
de industria

velocidade de
processamento das
maquinas RISC
confiabilidade dos
sistemas operacionais

alto custo do software
basico (Sistema
Operacional)

ndo existe um conjunto
Processador/Sistema
Operacional que se
destaque como lider de
mercado (escolha muito
dependente do
segmento de industria)
alto custo de
treinamento de pessoal

INTEL/WINDOWS 95/NT

plataforma em
expansio no setor
industrial (tendéncia de
mercado)

baixo custo de
hardware

baixo custo de software
basico (Sistema
Operacional)
plataforma padrio
mundial em
microcomputadores
pessoais (pouca
necessidade de
treinamento)

Velocidade das
maquinas INTEL ainda
¢ inferior & maquinas
RISC

tecnologia recente em
ambiente industrial
migragio das solugdes
industriais para essa
plataforma s ocorreu
recentemente

Observando as vantagens e desvantagens de cada plataforma e tendo em vista

a rapida expanséio da arquitetura Intel/Windows NT e a conseqiiente migracdo dos

softwares especificos de cada industria para essa plataforma tnica (e.g. as solugdes de
CAD/CAM da IBM/Dassault Systémes - o CATIA e a solugfio de ERP da SAP - o

SAP R/3, entre outras) optou-se por desenvolver o controlador para esta plataforma de

modo a se alinhar com a tendéncia atual de mercado.

-39.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

4.2.2 - Arquitetura de Software e Estruturas de Dados

Um dos requisitos do projeto ¢ o desenvolvimento do cédigo do controlador
de forma modular e orientada a objetos. Assim, analisando a estrutura minima
necessaria para o controlador identifica-se os seguintes modulos: a Representagio
Interna do grafo (estrutura de dados), um Interpretador do grafo (médulo que constroi
o grafo a partir da descrigio textual), um Gerenciador de Marcas (médulo responsével
pelo disparo de transigfes), um arbitro interno responsavel pela andlise das condigdes
booleanas, um controlador de /O responsavel pela conectividade do grafo com o
meio externo e um mddulo de interface com o usudrio.

A fim de se definir como deveria ser realizada a representacfio interna do
controlador levantou-se algumas alternativas de estruturas de dados para essas

representages;

1. Utilizacdo de tabelas para representar cada elementos do grafo e suas
respectivas conexdes: dessa maneira cada tipo de elemento do grafo seria
representado através de uma tabela onde cada coluna corresponde-se a uma
determinada propriedade ou conexdo deste elemento com os demais. Por exemplo,
na tabela de boxes constariam o indice na tabela marcas da marca que esta
presente no box, a sua constante de tempo (no caso de boxes temporizados), os
indices nas tabelas de arcos dos arcos que partem ou chegam nesse box, etc. Nesta
representagdo as tabelas constituiriam os macro-objetos que deveriam ser
manipulados para se executar a dindmica. Vantagens: facil transcricdo da
linguagem textual para a tabela, possibilidade de se utilizar um banco de dados
(integrabilidade). Desvantagens: dificil controle da consisténcia do disparo de
transi¢Bes (sempre se tem uma visio global do grafo), necessidade de se interpretar
o texto da tabela durante todo passo de disparo de transigdes devido a existéncia de
elementos com niimero variavel de pardmetros (e.g. nimero de arcos que chegam
em um box ou transigio).

2. Utilizacdo de vetores de classes de objetos em diferentes niveis de abstracéo:
nesta alternativa seriam definidas classes de objetos hierarquizadas para
representar os elementos do grafo e seus atributos (que constituiriam objetos auto-
contidos). Dessa forma os macro-objetos que deveriam ser mantpulados para se
executar a dindmica do sistema seriam os préprios elemento do grafo. Vantagens:

-40-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

facil controle do disparo de transi¢do (visdo local do grafo), elementos do grafo
podem ter dindmica propria (eliminando a checagem do tipo de elemento no nivel
de gerenciamento de disparos de transigdes), nimero flexivel de parimetros.
Desvantagens: dificil construgdo do grafo a partir da descricéio textual.

3. Utilizacdo de Matrizes de incidéncia e listas de atributos: nesta representacdo as
conexdes do grafo estariam representadas através de matrizes de incidéncia e as
propricdades dos elementos do grafo estariam relacionadas em listas de
propriedades, assim os macro-objetos a serem manipulados na execugo da
dinimica seriam as prdprias matrizes de incidéncia e as listas de atributos para o
calculo do vetor de disparo das transigBes. Vantagens: permite posteriormente o
acoplamento de algoritimos de andlise matematica sobre o grafo. Desvantagens:
dificil construgdio do grafo a partir da descrigfio textual, dificil gerenciamento dos
atributos dos elementos, dificil modelagem matematica das caracteristicas do E-
MFGQG.

Na tabela 4.2.2-1 ¢ feita uma analise comparativa entre as 3 arquiteturas de
dados apresentadas, para se construir a tabela considerou-se 3 tipos de caracteristicas:
caracteristicas que fazem parte da especificagiio do software (peso 5), caracteristicas
ligadas a performance, testes e codificagiio (peso 4) e caracteristicas desejaveis

(demais pesos).

-41-

Controlader E-MFG para Sistemas Integrados e Flexiveis de Produciio

Tabela 4.2.2-1: Comparaciio entre as alternativas de estruturas de dados

Peso | Tabelas Vetores Matrizes
de de de
Elementos | Objetos | Incidéncia

Facilidade de alteracoes na 5 7 9 6
funcionalidade dos elementos do grafo
Facilidade de construgiio do grafo a 4 9 5 5
partir da descricdo textual
Performance de ciclo de disparo de 5 5 7 8
transicoes
Flexibilidade quanto a0 niimero de 5 7 10 7
parimetros do grafo (encapsnlamento)
Facilidade de representacio dos dados 2 10 5 5
através de baneo de dados
Facilidade no gerenciamento de 4 5 9 5
disparo de transicoes
Facilidade de se adicionar algoritmos 3 5 5 10
de andilise matemdtica sobre o modelo
Facilidade de gerar casos de teste 4 8 8 7
Classificacio Geral da Solucio 6.81 7.59 6.65
Classificacio Normalizada 0.90 1.00 0.87

Analisando-se, portanto, a tabela adotou-se a segunda solugsio para a estrutura
de dados interna do controlador. O detalhamento desta estrutura de dados e modulos

funcionais encontra-se no capitulo 6.

4.3 - Modelagem Estrutural/Funcional do Controlador

Analisando-se os requisitos de funcionalidade do controlador pode-se
identificar um conjunto de tarefas que o controlador deve executar, Sob um ponto de
vista macroscopico essas tarefas podem ser assim enumeradas: a leitura e
interpretagdo da descrigfo textual do grafo, a construcio da representagdo interna de
dados, o gerenciamento de disparo de transi¢des, o gerenciamento das portas de
comunicacdo e interfaces com o usuario. Essas tarefas compde a estrutura minima do
controlador,

Tomando a estrutura minima necessaria para o controlador pode-se modelar o
controlador através dos seguintes modulos funcionais: a Representagdo Interna do

grafo (estrutura de dados), um Interpretador do grafo (médulo que constréi o grafo a

-42-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

partir da descri¢do textual), um Gerenciador de Marcas (médulo responsével pelo
disparo de transi¢Oes), um arbitro interno responsavel pela analise das condi¢des
booleanas, um controlador de I/O responsavel pela conectividade do grafo com o
meio externo e um modulo de interface com o usudrio. A interligagio ou fluxo de

dados entre esses modulos esta representada na figura 4.3-1;

Registro de Mensagens

Estrutura |y _ Gate p/
de . Gerenciador t> Interface
Dados de Marcas | Grfica
N R
\ : "
; Interface .
Controlador | ! t
Interpretador de 1O " Grifica ;
: 1
; i
TR 1 g e—
Interface Grafica em si
se encontra fora de escopo
Arquivo Meio
de Entrada Externo

figura 4.3-1 - Fluxo de Dados entre os Médulos do Controelador

4.4 - Interfaces de Comunicag¢io e Sinais de Controle

A fim de exercer a suas atividades de supervisdo e controle o controlador deve
receber sinais da planta e enviar sinais de controle para esta altima. Para se
implementar o controlador o mais genérico possivel dentro da plataforma adotada,
bem como facilitar a realizagdo de testes de comunicagio e controle, optou-se por
implementar, inicialmente, apenas um método de comunicagfo baseado no protocolo
DDE (Dynamic Data Exchange), que ¢ um método padrio de troca de dados entre
softwares dentro da plataforma Windows. Essa abordagem possui a vantagem de
tornar a leitura e escrita no controlador independente do hardware com o qual se esta

comunicando, pois toda a comunicagdo é parametrizada, ndo havendo a necessidade

-43-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

de se desenvolver um driver de comunicago no controlador para cada hardware em
que se deseja ler ou escrever dados. Outra raziio para se optar pelo protocolo DDE é o
crescente interesse dos fabricantes de equipamentos de instrumentagio e controle na
disponibilizagio dos dados desses equipamentos via DDE na plataforma Windows.
Exemplos desse comportamento s#o a Moeller ¢ a Siemens, que possuem DDE
servers para disponibilizar a leitura e escrita de dados em seus PLC’s.

E interessante que o controlador rode em ambiente de rede, o que é possivel
utilizando o protocolo DDE diretamente numa rede Windows NT, ou indiretamente
através de uma outra aplicagfo (escrita em Java, ou Visual Basic, por exemplo) que
faca a interface entre o protocolo da rede ¢ o padrido DDE.

No futuro, poderdo ser adicionados modulos ao objeto controlador de I/0 que
permitam a comunicagdo diretamente com o protocolo de rede (TCP/IP, por

exemplo).

-44 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

S - Linguagem de Programacio E-MFG Script

Na secfo 4.1 foi introduzida a necessidade de especificar uma linguagem de
programagfo para o controlador E-MFG.

No presente caso, uma linguagem de programacfio nada mais seria que uma
representagdo textual dos elementos que compdem um grafo E-MFG. Essa € a
premissa basica do £-MFG Script.

Sendo o EMFG script a principal forma de interagdo entre o usudrio e o
controlador, a linguagem deve ser simples de usar e a0 mesmo tempo garantir a
representacdo de todos os elementos basicos da metodologia E-MFG, conforme
discutido na segdo 3.3.

A fim de facilitar a compreensdo do cdédigo e a documentagio dos grafos, o -
MFG script deve permitir a entrada de comentarios.

Tendo em vista o desenvolvimento de uma futura interface para a construgfio
de grafos que trabalhe em conjunto com o controlador, a estrutura do E-MFG script
deve ser mecénica o suficiente para facilitar sua geragdo automatica por uma

interface grafica.

3.1 - Estrutura do E-MFG Script

A estrutura proposta para o script baseia-se na declaragiio de ‘fags’, que
indicam o comego € o fim de cada se¢fio. Tanto a ordem quanto a nomenclatura das
secdes ¢ rigida de forma a facilitar a interpretagfio pelo controlador. Mesmo que um
grafo nfio contenha elementos de um determinado tipo, sua se¢dio deve estar presente,
apesar de se enconfrar vazia.

Os comandos sdo separados pelo ponto-e-virgula e a presenga ou nio de
espagos entre os comandos ¢ irrelevante. Todos as comparag¢des de caracter sfo case-
insensitive, ou seja ndo hd distingBo entre maitisculas e minusculas inclusive para
nomes de atributos.

Os comentarios séo precedidos de caracteres de porcentagem, o resto da linha

¢ desconsiderado pelo interpretador.

-45.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

5.1.1 — Enderecamento

Conforme j&4 mencionado anteriormente, prevé-se a comunicagéo do
controlador via DDE. Tendo isto em vista, propde-se uma forma de enderegamento
que permita localizar um atributo de uma marca especifica em qualquer grafo.

O enderecamento ¢ feito de maneira hierdrquica, o nome de um atributo
sozinho € considerado local, ou pertencendo & prépria box (e.g. ID).

O nome da box, seguida por uma exclamaggo, seguido por pelo nome do
atributo se refere a uma box do préprio grafo (e.g. BOX1!ID).

O nome do grafo e o nome de um gate separados pelo sinal de exclamagio
representam um gate pertencente a outro grafo (e.g. GRAFO1!GATE).

Observe que no (ltimo caso, a comunicagiio sé é realizada caso o gate do
grafo de origem esteja declarado ¢ disponivel. Assim assegura-se que o usudrio tem

controle total sobre os dados que disponibiliza para outros grafos e aplicagdes DDE.

5.1.2 - Inclus@o de Grafos Templates

A fim de tornar a descrig#o do grafo o mais modularizada possivel, 0 E-MFG
Script deve prever a inclusdo de ‘femplates’ que representem elementos que se
repetem no modelo. Em outras palavras, deve permitir a inclusio de sub-grafos
armazenados em outros arquivos, constituindo assim uma biblioteca de objetos de
modelagem reutilizaveis.

Como a identificagdo dos elementos do grafo deve ser {inica, ser utilizado um
método de concatenagdo para os Yabels’ do elementos do objeto a ser incluido.
Assim, ao incluir um objeto do tipo ‘torno’ deve ser especificado o seu nome, como
por exemplo ‘tl . Desse modo, um box interno ao ‘torno’ chamado ‘prepara’
passaria a ser referenciado como ‘t1_prepara’.

A tmica excegdo a esta regra séo os atributos de marca, que sio adicionados ao
conjunto de atributos do nivel hierdrquico original. Caso haja incompatibilidade nos
tipos dos atributos, uma mensagem de erro deve ser gerada no momento da

compilagéo.

- 46 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Preduciio

3.2 — Se¢des do E-MFG Script
5.2.1 — Secéio Inicial

Todo o script deve comegar com as seguintes informacdes:

EMFG Script version : XX.XX;
Program Title: STRING;
Description: STRING:

A versdo do script ¢ usada para controle interno durante a fase de

desenvolvimento. A niimero da versdo do interpretador serz fornecido para o usudrio.

O titulo deve ser sempre de uma palavra. O grafo ¢ identificado por essa
palavra, inclusive para o registro na comunicacio DDE. No caso de mais uma
palavra ser usada, s6 a primeira é considerada.

A descrigdio serve para controle do usudrio e pode conter até 255 caracteres.

5.2.2 - Tags <INCLUDE>

Essas “tags’ servem para a incluso de sub-grafos reutilizaveis que
representam elementos de modelagem repetidos:

<INCLUDE>
ADD{arquivo,prefixo);

</INCLUDE >
Esse comando define que arquivo sera processado em conjunto com o

presente grafo, sendo que todas os nomes de seus elementos serdio precedidos de
prefixo.

- 47 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

3.2.3 — Tags <EMFG>
Essas ‘tags’ servem para controle do objeto interpretador, sendo que todas as

demais se¢des devem estar contida entre essas ‘tags "

<EMFG>
demais segbes

</[EMFG>

5.2.4 ~ Tags <MARKS>
Essa segéo define os atributos da marca. Cada comando especifica o nome e o

tipo de atributo. A sintaxe dos comandos é a seguinte:

<MARK>
INTEGER(n);
STRING{ID);
</MARK>

O primeiro comando adiciona um atributo inteiro chamado n e o segundo um

atributo string de nome ID.

- 48 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

5.2.5 - Tags <BOXES>
A segunda segho define as boxes usadas. A sintaxe dos comandos é a

seguinte:

<BOXES>
COMMON(BOX1);
CAPACITY(BOX2,2, LIFO);
PACKING(BOX3,10,FIFO);
UNPACKING(BOX4,L0);
TRANSFORMATOR(BOX5);
{
IF (n==1)
THEN
{
TO_NUM(n,2);
TO_STRING(NOME,FIRST);
TO_ATTRIB(n,BOX1IN);
TO_GATE(n, GATE1);

}
ELSE

}
</BOXES>

Uma box do tipo comum sé precisa especificar seu nome (e.g. BOX1).

Uma box do tipo capacidade especifica seu nome, sua capacidade e seu
método de fila (i.e. FIFO ou LIFO).

Uma box do tipo agrupador especifica seu nome, o tamanho do pacote € a
ordem de inser¢do na lista.

Uma box do tipo dispersor precisa especificar seu nome e a forma de saida das
marcas que pode ser tanto LO (‘Last Out’) quando FO (‘First Qut M.

Um box transformador especifica seu nome e uma série de sentencas

condicionais associadas a uma série de atribuicdes dentro dos blocos THEN e ELSE.

-49-

Controlader E-MFG para Sistemas Integrados e Flexiveis de Produciio

A sentenca condicional aparece dentro dos parénteses depois do comando TF e
deve apresentar uma sintaxe semelhante a linguagem C (ver capitulo 6 item 6.1.3).

Os operadores suportados sdo:

Operagio Operador
igualdade =
maior que >
menor que <
negacao ~
AND &&
OR I

A meta ¢ atingir um nivel de detalhamento que permita a declaragio do
condicional da forma mais natural possivel, como num programa em C. Isso implica
inclusive na utilizagéio de parénteses para alterar a ordem de avaliag#o.

As atribuigSes seguem os comandos THEN e ELSE. As atribuicdes dentro do
THEN séo executadas caso o condicional seja verdadeiro. Ambos o ELSE ¢ o
THEN ni#o sdo opcionais, mas podem se encontrar vazios.

Espera-se pelo menos a presenga de um bloco condicional, mas no caso dele
ndo ser necessario a palavra TRUE deve estar entre parénteses. Assim garante-se que
o conjunto de atribui¢des associado ao bloco THEN ¢é sempre executado.

Existem quatro tipos de atribuigo possiveis:

Tipo Descricio

TO_NUM atributo inteiro para constante inteira

TO_STRING | atributo string para constante string

TO_GATE atributo inteiro/string para valor tum gate

TO_ATTRIB | atributo inteiro/string para outro atributo do

mesmo tipo pertencente 4 outra box

O interpretador ndo deve permitir a declaragfio de atribui¢des entre atributos

de tipos diferentes.

-50-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

5.2.6 — Tags <TRANSITS>

Essa sec8o define as transigdes usadas. A sintaxe dos comandos ¢ a seguinte:

<TRANSITS>
COMMON(TRANS1);

TEMP(TEMP1,2);
CONDITIONAL(TRANS1,{(BOXIN=1)8&(GATE<5)));
</TRANSITS>

A transi¢io comum deve apenas especificar seu nome.
A ftransi¢io temporizada especifica seu nome ¢ o tempo de disparo em

segundos.
O comando CONDITIONAL adiciona um condicional a uma dada transicéo,
habilitando o disparo através de uma logica do tipo AND (ver capitulo 6 item 6.1.3).

5.2.7 - Tags <ARCS>
Essa seco define os arcos. A sintaxe dos comandos € a seguinte:
<ARCS>
FROM_TRANSITION(ARC1,TRANS1,BOX1);
FROM_BOX{ARC2,TRANS2,BOX2);
ADD_FILTER (ARC1, NOT_PASS_COMPOSITE, PASS);
{

n; %apenas o atributo n da marca passara para o estado seguinte

}
ADD_FILTER(ARC2,NOT_PASS_COMPOSITE,NOT_PASS);

{
NOME; % o atributo NOME sera anulado durante o disparo da transi¢do

}
ADD_FILTER(ARC3,NOT_PASS_COMPOSITE,NOT_PASS_ALL);

{ % nenhum atributo passara adiante

}
</ARCS>

-51 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

Os arcos que vem de transigdes sdo criados por FROM_TRANSITION, que
especifica 0 nome do arco, a nome da transigdo de origem € o nome da box de
destino,

Os arcos que vem de boxes sdo criados por FROM_BOX, que especifica o
nome do arco, a nome da box de origem e o nome da transic@o de destino.

O comando ADD_FILTER adiciona um filtro ao arco especificado (um arco
que ndo possui um comando ADD FILTER associado recebe automaticamente um
filtro com os valores padrio - PASS_COMPOSITE e PASS_ALL).

O pardmetro PASS_COMPOSITE em um filtro seletivo no arco permite a
passagem da composigiio da marca. O pardmetro NOT_PASS COMPOSITE anula
a composigio da marca,

O pardmetro PASS em um fiitro seletivo no arco permite a passagem apenas
dos atributos especificados, os demais sio anulados, O pardmetro NOT PASS anula
os atributos especificados e permite a passagem dos demais. O pardmetro
NOT_PASS_ALL anula todos os atributos de um arco. O parimetro PASS ALL

permite a passagem de todos os atributos de um arco.

5.2.8 — Tags <GATES>

Essa segfio define os gates. Na linguagem EMFG Script, todo e qualquer
acesso a via de dados ¢ feita através dos comandos desta se¢do (ampliando o conceito
de ‘gates’ para um elemento que transporta dados ou sinais de controle internos ou
externos).

Os arcos de sinais de saida sfo criados pelos comandos que disponibilizam os
dados das marcas para o meio externo ao grafo e o arcos de sina! de entrada
(definidos na segdo 3.3) sdo representados por meio dos comandos que trazem dados
externos para o grafo. Assim, a diferenciaco entre as portas internas, externas e os
arcos de sinal de saida e entrada se dar4 pela funcionalidade imposta ao elemento de
transporte de dados criado. Esta funcionalidade ¢ determinada pelo comando
utilizado na criaggo do objeto (NOTA: este elemento serd chamado no E-MFG Script
de ‘gate’, independentemente da sua fungio).

E importante frisar que apesar de se utilizar genericamente o nome ‘gate’ para

todos os elementos que transportam dados ou sinais de controle, pode-se ainda

-52.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

distinguir (pela funcionalidade apresentada) os elementos estruturais do E-MFG que
realizam esse transporte (e.g. portas habilitadoras internas, arcos de sinal de saida,
etc.). Logo, nfio houve perda de representatividade ou de generalidade do E-MFG
Script para a representagio de grafos E-MFG.

A sintaxe dos comandos desta segfio é a seguinte:

<GATES>

INTERNAL_PERMIT(label, boxorig, transdest);

INTERNAL_NOT_PERMIT(label, boxorig, transdest);

INTERNAL_FULL_PERMIT(label, boxorig, transdest);

INTERNAL_,FULL__NOT_PERMIT(IabeI, boxorig, transdest);

EXTERNAL_INPUT_PERMIT(label, transdest,mtcom,parcom,ativ);

EXTERNAL__INPUT__NOT_PERMIT(label,transdest,mtcom,parcom,ativ);

EXTERNAL_OUTPUT_ PERMIT(Iabel,boxorig,mtcom,parcom,ativ);

EXTERNAL_OUTPUT_NOT_PERMIT(IabeI,boxorig,mtcom,parcom,ativ);

EXTERNAL_OUTPUT_ FULL__PERMIT(IabeI,boxorig,mtcom,parcom,ativ);

EXTERNAL_OUTPUT_ FULL_NOT_PERMIT(Iabel,boxorig,mtcom,parcom,ativ);

INTERNAL _N(label,box_orig);

EXTERNAL__OUTPUT_DATA(Iabel,boxorig,atriborig,mtcom,parcom,ativ);

EXTERNAL_OUTPUT_N (Iabel,boxorig,atriborig,mtcom,parcom,ativ);

EXTERNAL_INPUT_DATA(Iabel,tpret,mtcom,parcom,ativ);

ADD_CONDITIONAL(cond);

</GATES>

O ‘gate’ interno de permit (habilitador) ¢ criado pelo comando
INT_PERMIT que especifica o nome do gate’, a box de origem e a transicfio de
destino. A condig¢io para retornar TRUE ¢ a presenga de marca na box de origem.

O ‘gate’ interno de not-permit (inibidor) ¢ criado pelo comando
INT_NOT_PERMIT que especifica o nome do gate’, a box de origem e a transiggo
de destino. A condigfo para retornar TRUE é a auséncia de marca na box de origem.

O ‘gare’ interno de permit especifico para boxes capacidade, agrupador ¢
dispersor é criado pelo comando INT_FULL_PERMIT que especifica o nome do
‘gare’, a box de origem e a transicio de destino. A condigdo para retornar TRUE é a
box atingir sua capacidade méxima de marcas.

O ‘gate’ interno de not-permit especifico para boxes capacidade, agrupador e

dispersor € criado pelo comando INT_FULL_NOT_PERMIT que especifica o nome

-53-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

do ‘gate’, a box de origem ¢ a transigéo de destino. A condig#o para retornar TRUE é
a box n#o ter atingido sua capacidade maxima de marcas.

O ‘gate’ extemo de entrada permit é criado pelo comando
EXT_INPUT_PERMIT que especifica o nome do ‘gate’, a transi¢iio de destino, o
'método € a string concatenada para comunicagdo. O retorno é interpretado como
booleano.

O ‘gate’ externo de entrada not-permit é criado pelo comando
EXT_INPUT_NOT_PERMIT que especifica 0 nome do ‘gate’, a transi¢io de
destino, o método e a string concatenada para comunicagfo. O retorno ¢ interpretado
como booleano.

O ‘gate’ externo de saida permit € criado pelo comando
EXT_OUTPUT_PERMIT que especifica o nome do ‘gate’ ¢ a box de origem. O
retorno € TRUE quando ha presenga de marca no box.

O ‘gate’ externo de saida not-permit é criado pelo comando
EXT_OUTPUT_NOT_PERMIT que especifica 0 nome do ‘gate’ ¢ a box de
origem. O retorno é TRUE quando ha auséncia de marca na box.

O ‘gate’ externo de saida permit especifico para boxes capacidade, agrupador
¢ dispersor € criado pelo comando EXT_OQUTPUT_FULL_PERMIT que especifica
o nome do ‘gate’, a box de origem e a transigdo de destino. A condigdo para retornar
TRUE ¢ a box atingir sua capacidade maxima de marcas.

O ‘gate’ externo de saida not-permit especifico para boxes capacidade,
agrupador e dispersor ¢ criado pelo comando
EXT OUTPUT_FULL_NOT_PERMIT que especifica o nome do ‘gate’, a box de
origem ¢ a transi¢do de destino. A condi¢fio para retornar TRUE € a box nio ter
atingido sua capacidade maxima de marcas.

O ‘gate’ interno de dados € criado pelo comando INT_DATA que especifica
o nome do ‘gate’, a box de origem e o atributo. O tipo de retorno depende do tipo do
atributo.

O ‘gate’ externo de saida de dados ¢ criado pelo comando
EXT_OUTPUT_DATA que especifica o nome do ‘gate’, 0 box ¢ o atributo de saida.
O tipo de retorno dependo do tipo do atributo.

w54 .

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

O ‘gate’ externo de entrada de

dados

¢ criado pelo comando

EXT_INPUT_DATA que especifica o nome do ‘gate’, o método e a string de

comunica¢do. No caso DDE, a string de comunicagio deve estar no formato

“Aplicagdo! Tépico!ftem™. O tipo de retorno depende do tipo especificado.

O comando CONDITIONAL adiciona um condicional com os apresentados

anteriormente. Esse condicional altera o valor de retorno do ‘gate’ através de uma

logica AND (ver capitulo 6 item 6.1.3).

A tabela 5.2.8a apresenta um resumo da sintaxe dos comandos:

Tabela 5.2.8a - Comandos para Declaracio de Gates

Comando 1 2 3 4 5 6
INTERNAL_PERMIT label box origem rans. dest.
INTERNAL_NOT_PERMIT label box origem trans. dest.
INTERNAL_FULL_PERMIT label box origem trans. dest.
INTERNAL_FULL_NOT PERMIT labe! box origem trans, dest.
EXTERNAL_INPUT_PERMIT label trans. dest. mét. com. par. com. ativagiio
EXTERNAL_INPUT_NCT_PERMIT label frans. dest. mét. com. par.com. ativagdo
EXTERNAL_OUTPUT_PERMIT label box origem mét. com, par. com. ativagiio
EXTERNAL_OUTPUT_NOT_FERMIT label bhox origem mét. com. par. com, ativagio
EXTERNAL_OUTPUT_FULL_PERMIT label box origem mét. com, par.com. ativagio
EXTERNAL_QUTPUT_FULL_NOT _PERMIT label box origem mét, com. par. com. ativagio
INTERNAL N label box origem
EXTERNAL_OUTPUT DATA label box origem atrib. origem mét. com. par.com. ativagio
EXTERNAL_OUTPUT_N label box origem mét. com. par. com., ativagdo
EXTERNAL_INPUT_DATA label tipo de ret. mét. com. par.com. ativagio
ADD_CONDITIONAL cond

Onde define-se;

e label : um nome que define o gate unicamente;
¢ cond : uma sentenga condicional

¢ box origem : box de onde o gate sai;

e atrib. origem : atributo da marca dentro do box de origem;

e trans. dest. : transi¢fio para onde o gate vai;

¢ met. com. : método de comunicagio, (s6 pode ser DDE);
® par. com. : parimetro de comunicagio concatenada (vide abaixo)

s ativagdo : ACTIVE ou PASSIVE.

55

-]

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

No controlador, o iinico método de comunicago implementado & o DDE -
(Dynamic Data Exchange). Nesse método s3o definidos trés parimetros para
identificar unicamente um dado a ser transmitido: aplicagdo, topico e item. Definiu-
se a seguinte estrutura para a string concatenada de comunicagio:

aplicagdio | topico | item

Para maiores detalhes sobre a comunicagdo DDE, vide capitulo 6 item 6.6
sobre o objeto comunicador.

Quando se declara um gate externo passivo, tanto de entrada quanto saida, nfo
€ necessario se preocupar com a string concatenada, Ja que ela nfo sera mesmo usada.
Porém, ndo pode se deixar de preencher esse campo, uma vez que fodos os

pardmetros sdo esperados. Observe o exemplo abaixo:

EXTERNAL_INPUT_PERMIT (exemplol, transl,DDE, dummy, PASSIVE),

5.2.9 — Tags <INITIAL>

Essa seglo define as condigdes iniciais do grafo. A sintaxe dos comandos é:

<INITIAL>
ADD_MARK(BOX1)

{
TO_NUM(N,0);
TO_STRING(ID,NOME1);

}
<fNITIAL>

O dnico comando dessa secdio ADD MARK adiciona 1 marca na box
indicada entre os parénteses. Os comandos de atribuigdio entre chaves indicam os

valores iniciais para a marca.

- 56 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

5.3 — Exemplo de um Grafo descrito por E-MFG Script
Como exemplo serd usado o grafo da figura 5.3-1, retirado da secdo 2.6:

tl a20) M-a’quin'a alo 8
Disponivel

al4
Mag Out

marca = {Pega}
onde << Pega = String>>

®- ¢}
®={A} Robo Disponivel
®-(5)
Modelo E-MFG do Sistema
Figura 5.3-1 — Exemplo de um grafo E-MFG

EMFG Script version : 1.0;
Program Title: Exempio;

Description: exemplo de script E-MFG;
% a préxima segfio ndo inclui nenhum objeto reutilizavel
<INCLUDE>

</INCLUDE>

% inicio da declaragio do grafo
<EMFG>

% template dos atributos da marca
<MARKS>

STRING {PECA);

</MARKS>

-57.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

% declaragéio das boxes
<BOXES>
CAPACITY(MAGOUT,3,FIFO};
COMMON (CARREGAMENTO);
COMMON (PREPARADAY);
COMMON (MAQDISP);
COMMON (PROCA);
COMMON (PROCB);
COMMON (ROBDISP);
COMMON (ACABADA);
COMMON (DESCARREGAMENTO)
CAPACITY{MAGIN,3,FIFO);
</BOXES>

% declaragido das transigées
<TRANSITS>

COMMON (T1);

COMMON (T2);

COMMON (T3);

COMMON (T4);

COMMON (T5);

COMMON (T6);

COMMON (T7);

COMMON (T8);
</TRANSITS>

-58-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

% declaragido dos arcos orientados

FROM_BOX(A1,MAGIN,T1);
FROM_TRANSITION(A2,T1,CARREGAMENTO);
FROM_BOX(A3,CARREGAMENTO, T2);
FROM_TRANSITION({A4, T2, PREPARADA};
FROM_BOX(A5 PREPARADA, T3);
FROM_BOX(A6,PREPARADA, T4);
FROM_TRANSITION(A7, T3,PROCA);
FROM_TRANSITION(A21,T4,PROCB);
FROM_BOX(A8,PROCA,T5);
FROM_BOX(A22,PROCB,T6);
FROM_TRANSITION{AS, T5 ACABADA);
FROM_TRANSITION{A10,T6,ACABADA);
FROM_BOX(A11,ACABADA,T7);
FROM_TRANSITION({A12,T7, DESCARREGAMENTO);
FROM_BOX(A13,DESCARREGAMENTO, T8);
FROM_TRANSITION(A14,T8 MAGOUT);
FROM_TRANSITION(A15, T8, ROBDISP);
FROM_BOX(A16,ROBDISP,T7);
FROM_TRANSITION{A17 T2, ROBDISP);
FROM_BOX{A18, ROBDISP,T1);
FROM_TRANSITION(A19,T8, MAQDISP);
FROM_BOX(A20,MAQDISP,T1);

% declaragdo dos filtros

ADD_FILTER(A15, NOT_PASS_COMPOSITE, NOT_PASS_ALL);

ADD_FILTER(A17, NOT_PASS_COMPOSITE, NOT_PASS_ALL);

ADD_FILTER(A19, NOT_PASS_COMPOSITE, NOT_PASS_ALL);

-59.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

% declara¢do dos gates

<GATES>
INT_PERMIT(G1,PREPARADA T3);
INT_PERMIT(G2,PREPARADA T4);

% declarac@o das condi¢des para os gates
CONDITIONAL(G1,PECA="A");
CONDITIONAL(G2,PECA="B’);

</GATES>

% declaragdo das marcagdes iniciais
<INITIAL>

ADD_MARK(MAGIN,2);

{
TO_STRING(PECA A);

}
ADD_MARK(MAGIN, 1);

{

TO_STRING(PEGA B);

}
ADD_MARK(MAQDISP, 1);
{

}
ADD_MARK(ROBDISP, 1);
{

}
</INITIAL>
</EMFG>

5.4 — Observagio Sobre a Especificaciio do E-MFG Script
Esta ¢ a primeira proposta de uma especificagio de uma representagéio textual.
Com base na experiéncia a ser adquirida nos préximos meses com a implementacio

de um interpretador, ¢ possivel que alterages possam a ser sugeridas.

- 60 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produgéo

6 - Estrutura de Dados

O objetivo desse capitulo é detalhar o modelo da estrutura de dados das
classes de objetos que compde o sistema.

A partir do modelo da solucdo apresentada no capitulo 4 (figura 4.3-1)
construiu-se um modelo de estrutura de dados em 5 niveis hierarquicos (ver
figura 6-1) descritos a seguir:

1. Elementos Estruturais Basicos: Constituem os micro-elementos que compde
os elementos estruturais do grafo tais como as condigdes booleanas, as atribuigbes e a
estrutura dos atributos das marcas.

2. Elementos Estruturais do E-MFG: Constituem os objetos que de fato
representam os elementos estruturais que compde o grafo (boxes, transicdes,
portas,etc..)

3. Representagio do Grafo: Corresponde aos objetos que permitem o
agrupamento de elementos estruturais basicos do E-MFG em listas que compdem a
representacio do grafo.

4. Elementos de Gerenciamento: Constituem os objetos que manipulam a
dindmica e as interfaces do grafo.

5. Aplicagio: Corresponde ao nivel de interacdo com o usudrio

-61-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

figura 6-1 - Hierarquia dos Objetos do Controlador

6.1 - Blocos Funcionais Elementares

A fim de se representar adequadamente os elementos do E-MFG, é necessario
representar as propriedades desses elementos. Para facilitar essa representagfo serdo
adotadas classes de objetos que representem essas propriedades.

Identifica-se, a priori, 4 tipos de elementos que constituem as propriedades de
um elemento do grafo, sfo eles os filtros dos arcos orientados, as condigdes
booleanas, as atribuigdes e os atributos das marcas.

A seguir sera feita a descrigfio da estrutura de dados de cada uma dessas
representacdes.

6.1.1 Estrutura dos Atributos das Marcas

Conforme definido na descri¢do do E-MFG Script (Capitulo 5), cada atributo
da marca € identificado por um nome ou ‘abel’ que o identifica de maneira univoca.
Serdo suportados dois tipos basicos de atributos de marca: valores inteiros e texto
(‘strings’).

Dessa forma, a estrutura de uma classe de objetos que implementa essa

representagio ¢ dada por:

62~

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

Definicdio de Classe de Objeto &
Nome da Classe de Objetos | CMarkAttribute
Objetivo da Classe Implementar a representagiio dos atributos das marcas
Atributos da classe Tipo de dados Descricio
mp_Label string pointer Nome do atributo
m_Type short integer(2 bytes) Tipo de atributo (e.g.: inteiro)

mp_StringValue

string pointer

Texto do atributo se aplicavel

pardmetros: nenhum

m_IntegerValue long integer(4 bytes) Valor do atributo se aplicavel
Métodos da classe Tipo de retorno Descri¢cdo
Create void inicializa 0 nome e 0s membros de
parametros: tipo e nome do atributo dados do atributo da marca
SetAttrib void atualiza o valor do atributo
pardmetros: o novo valor do
atributo (string ou long integer, o
que for aplichvel para o tipo de
atributo declarado)
GetTextValue string retorna o valor texto do atributo, se

aplicaivel gerando um erro de
depuragdo em caso contrario

GetlntegerValue
pardmetros: nenhum

long integer

retorna o valor inteiro do atributo,
se aplicavel gerando um erro de
depuragdo em caso contrario

GetLabel string retoma o nome do atributo
arfmetros: nenhum
GetAsText string retoma o valor do atributo
arimetros: nenhum formatado em uma string
SetToNull void Anula o valor do atributo
|_pardmetros: nenhum]

6.1.2 Estrutura das Atribui¢des

As atribuicles definidas no E-MFG Secript (Capitulo 5) para o box

transformador podem atribuir a um atributo de marca valores provenientes de

constantes (texto ou valores inteiros), de um atributo de uma marca pertencente a um

box do grafo, ou de um valor de um gate de dados.

Dessa forma, a estrutura de uma classe de objetos que implementa essa

representagio ¢ dada por:

-63-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Definicdo de Classe de Objeto

o

Nome da Classe de Objetos

CAttribution

Objetivo da Classe Implementar a representacio das atribuigtes
| Atributos da classe Tipo de dados Descricdo
m_Type short integer(2 bytes) Tipo de atribuicio (e.g : =cte)
m_BoxIndex long integer(4 bytes) Box que contém a marca cujo o

atributo vai ser aiterado

m_MarkAttributeIndex

long integer(4 bytes)

Indice na lista de atributos do
atributo que vai ser alterado

‘T m_EqualStringCte

string

Constante de Texto

Lm_EqualIntegerCteOrElementIndex

long integer(4 bytes)

Constante Numérica ou Indice do
Elemento que representa o valor a
ser atribuido

m_EqualMarkAtributeIndex

long integer(4 bytes)

Indice na lista de atributos do
atributo que possui o valor a ser
atribuido

Métodos da classe

Tipo de retorno

Descri¢cdo

Create
pardmetros: tipo, indice do Box,
indice do atributo e constante
numérica ou indice do gate;
ou tipo, indice do Box, indice do
atributo e string constante;
ou tipo, indice do Box, indice do
atributo, indice do segundo box e
indice do segundo atributo

void

inicializa os parimetros internos de |
acordo com o tipo de atribuigsio

DoAttribution
parimetros: listas de boxes e gates
do grafo

void

realiza a atribuicio a partir dos
valores atuais do grafo J

6.1.3 Estrutura das Condicdes Booleanas

As sentengas condicionais foram introduzidas no E-MFG com objetivo de

explicitar regras de controle associadas a valores de atributos de marca, (SANTOS

FILHO, D. J.,, 1993)

Sobre as sentengas condicionais, nesta seqdo sera:

® revisto seu uso no EMFG;

¢ definidos seus elementos;

® apresentada sua implementagfio como objeto;

e definida sua interface com o ususrio através do EMFG Script,

No EMFG foi previsto o uso de sentencas condicionais associadas aos gates

inibidores ou habilitadores e em restri¢Bes adicionais associadas 3 transigdes.

- 64 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

(box!atrib=5)

->7 > |

Box

(box!atrib2="0K %)

figura 6.1.3-1 - Elementos com expressdes condicionais

No exemplo o gate 56 permite o disparo da transicio caso haja uma marca na
box de origem e o atributo indicado dessa marca corresponda a um valor especifico.
Dessa forma, fica claro que a sentencga condicional representa uma regra extra de
controle.

Neste trabalho, interpretou-se essa caracteristica da seguinte maneira : «
sentenca condicional sempre representa uma adicdo booleana as regras usuais do E-
MFG. Assim foi possivel estender o uso das sentengas condicionais a outros
elementos, tais como gates de dados.

Nos gates de dados, a transmissdo de dados s6 ¢ permitida quando a sentenga

condicional é verdadeira

atrib2

(box!atrib=5)

—

Box

figura 6.1.3-2 - Gate de dados com expressiio condicional

No caso das transigdes, tanto comuns quanto temporizadas, o disparo sé é
feito quando todas as condigdes usuais estio satisfeitas além da sentenga condicional

ser verdadeira.

-65-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

Outro uso das sentengas condicionais estd nos boxes transformadores . Nesse
caso, a avaliagdo da sentenca condicional indica qual bloco serd executado (i.e. se
verdadeira o bloco THEN, se falsa o bloco ELSE):

Box Controlador

se Pega = 001
entdo %
Maguina = 003
Box Controlador
L/
se Peca = 001

entdo
Magquina = 003

Marca={Peca, Cliente, Pedido, Méaquina}

Box Controlador

@ ={001, ClienteX, 222, -} ~
@ ={001, ClienteX, 222, 003} se Pega = 001

entdo

Miquina = 003

figura 6.1.3-3 - Box Transformador e expresstes condicionais

As sentengas condicionais podem ser divida em: simples ou compostas.

Uma sentenga simples ¢ aquela que apresenta apenas uma relagio
condicional,

Ja uma sentenga composta apresenta virias relagdes concatenadas por
operadores 16gicos do tipo AND ou OR, e cuja ordem de avaliagdo pode ou ndo ser
definida através de parenteses.

Sentencas Simples

A divistio dos elementos de uma sentenga condicional simples pode ser feita
da seguinte forma: (LVALUE) OP (RVALUE) = TRUE/FALSE, ou NOT((LVALUE)
OP (RVALUE)) = TRUE/FALSE, onde o operador NOT age negando o valor final do

condicional.

- 66 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

{:} {002,ClienteZ,001,-}
Marca definida por: {:}

Marca = {CodPega,Encomenda,Méquina,C()djgo de Controle}

onde Box

<<

CodPeca = Integer - ! = =
Encomonda = Seing (Box!CodPe¢a=005) => TRUE
Miquina = Integer

Codigo de Controle = String
>

figura 6.1.3-4 - Aplicacio do Operador NOT

No caso do EMFG, o L-Value é sempre um atributo de marca. Aqui vale
introduzir a notagfio utilizada para se referenciar os atributos dentro de um grafo. O
sinal de exclamago separa a box que contém a marca do atributo contido pela marca:

O operador relacional pode ser: igualdade, diferenga, maior que ou menor
que. Nesse trabalho, por simplicidade, optou-se utilizar apenas esses quatro tipos, ja
que conjugando com o operador NOT pode-se obter os demais tipos (i.e. diferente,
menor ou igual a, maior ou igual a, etc. .).

J& 0 R-Value pode ser interpretado de vérias maneiras. Na proposta original
de EMFG, o R-Value era sempre considerado como um valor inteiro constante.
Tendo em vista as mudangas propostas nessa trabalho, admite-se que o R-Value possa
ser dos seguintes tipos: inteiro constante, string constante, valor de um gate de dados
ou valor do atributo de outra marca.

A avaliagio do condicional dé-se em tempo real de processamento do
controlador, ou seja trata-se de uma avaliagdo on-line que leva em conta o estado
atual do grafo.

Sentencas compostas

Uma sentenga composta corresponde a diversos condicionais simples que se
relacionam através de operadores loégicos do tipo AND ou OR, na ordem imposta
pelos parénteses.

Uma forma de resolver a ordem de avaliagdo ¢ representar a sentenga
condicional como uma arvore binaria, cujas folhas s3o os condicionais simples e
cujos nds representam os operadores légicos AND ou OR.

Um exemplo desse tipo de sentenga representada através de drvore encontra-se

a seguir,

-~ 67 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

(Box!Atrib=Gate)&&(Gate2=Cte)

~L -

AND

[Box!Atrib=Gate J [Gate2=Cte]
TRUE/FALSE TRUE/FALSE

figura 6.1.3-5 - Condicional Representado em estrutura de Arvore
Implementacio das Sentencas Condicionais em Objeto

Na se¢#o anterior especificou-se que as sentengas condicionais seriam
representadas por drvores bindrias. N#o se pretende rever os conceitos envolvidos
com a representacéo de arvores bindrias por meio de ponteiros, basta dizer que o
objeto possuird dois ponteiros, um para o filho da esquerda, outro para o fitho da
direita. Quando néo houver filhos, os ponteiros terdo valores nulos. Observe 2 figura

6.1.3-6, equivalente & arvore da figura 6.1.3-5.

-68 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

(Box!Atrib=QGate)& &(Gate2=Cte)

~ gy

Operator = AND
Expressdo =NULL

TRUE/FALSE /\ TRUE/FALSE

Operator = NULL Operator = NULL
Expressdo = (Box!Atrib=Gate) Expresséo = (Gate2=Cte)

/\/\

NULL NULL NULL

figura 6.1.3-6 - Representacido da Estrutura de Dados dos Condicionais

A estrutura da classe de objeto de sentengas condicionais ¢ dada por:

Definiciio da Classe de Objeto

Nome da Classe de Objeto | CConditional

Objgﬁvg da Classe | Implementar a representagio das sentengas
condicionais

Atributos da Classe Tipo de Dados Descri¢do

mp Owner pointer to CGraph ponteiro para o grafo-dono

m_Logic short mteger (2 logica interna (AND,OR, etc..)
bytes)

m NOT booleano operador NOT

m_LBox short integer (2 indice da box associada ao LValue
bytes)

m_LAttrib short integer (2 indice do atributo associado ao
bytes) LValue

m_Operator short integer (2 operador
bytes) (EQUAL,GREATER etc...)

m_RType short integer (2 tipo do RValue
bytes)

m_RIntCte short integer (2 constante inteira associada ao
bytes) RValue

m_RStrCte string constante string associada ao RValue

m RBox short integer (2 indice da box associada ao RValue
bytes)

m_RAttrib short integer (2 indice do atributo associado ao
bytes) RValue

-69 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

m_RGate short integer (2 indice do gate associado ao RValue
bytes)
mp_Right pointer to CConditional | ponteiro para filho da direita
mp Left pointer to CConditionat | ponteiro para filho da esquerda
Me¢étodos da Classe Tipo de Retorno | Descrigfio
Create

inicializa os membros do

parametros (légica do no, void CConditional. Os pardmetros de
PRI {elay operadons RValue sio interpretados de acordo
negacio, indica da LBox, indice . o i
da LAttrib, tipo do operador, com o tipo de condicional que esteja
tipo de RValue, parametro 1 do sendo criado
RValue, parimetro 2 do
RValue, pardmetro 3 do
RValue)
avalia 0 condicional, tendo como
Evaluate() BOOL parametros a condigdo atual do
grafo.
SetAlwaysTrue() void o condicional sempre responde TRUE
SetAlwaysFalse() void o condicional sempre responde FALSE
AddRight
pardmetro (ponteiro para o void adiciona um elemento a direita
CConditional & direiia)
AddLeft
parimetro (ponteiro para o void adiciona um elemento & esquerda
CConditional & esquerda)

O membro m Logic pode assumir os seguintes valores inteiros simbélicos:
AND, OR, ALWAYS TRUE, ALWAYS FALSE
O membro m Operator pode assumir os valores:
EQUAL, GREATER, LESSER
O membro m RType pode assumir os valores;
INT_CTE, STR_CTE,
INT_BOX ATB, STR BOX ATB,
INT_GATE_VAL, STR_GATE_VAL

A funglio Evaluate() realiza a légica associada 3 sentenca condicional,

percorrendo toda a 4rvore bindria e avaliando suas folhas, em seguida os nés sdo

avaliados até o valor final:

-70 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

(Box! Atrib=Gate)& &(Gate2=Cte)

g

[Operator = AND

Expressdo = NULL

Sl

Operator = NULL Operator = NULL
Expressédo = (Box! Atrib=Gate) Expressdo = (Gate2=Cte)

TRUE v

[TRUE AND FALSE J

FALSE

FALSE

figura 6.1.3-7 - Avalia¢iio dos Condicionais
Interface através do EMFG Script

Deve ficar claro que a principal preocupagio ao elaborar-se a interface através
do EMFG Script foi manter uma consisténcia com as principais linguagens de
programacdo disponiveis, especialmente com C e Java.

Como ja foi mencionado, o L-Value sera sempre um atributo de marca
associado através de uma referéneia do tipo box/atributo. A tnica exceglio a essa
regra € quando a sentenca condicional pertence a um bioco de um box transformador.
Caso ndo se especifique o box, o atributo ser2 considerado local, ou seja, contido na
marca presente no proprio box:

Os operadores sdo definidos da seguinte forma:

Operador Simbolo
NOT ~

igualdade —

maior que > J

menor que <

-7 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producito

A unica observagdo ¢ que o operador NOT deve sempre ser utilizado em
conjunto com parénteses.
Conforme descrito anteriormente, o R-Value pode ser interpretado de quatro

formas diferentes:

valor inteiro : um niimero inteiro qualquer (pode ser negativo);

¢ valor string : um string delimitado por aspas simples;

gate de dados : label do gate;

atributo ; referéncia box!atributo.
Usando essas regras para o declaragdo as sentencas condicionais, o EMFG
Script se aproxima das linguagens de programagio mais comuns, especialmente ao C

ou Java.

6.1.4 Estrutura dos Filtres dos Arcos Orientados
Os filtros dos arcos orientados definidos no E-MFG Script (Capitulo 5)
executam a filtragem seletiva dos atributos de uma marca quando ocorre o disparo de
uma transi¢io. O filtro pode ser dos seguintes tipos: passa tudo, passa nada, passa
atributo e ndo passa atributo de acordo com a definigio dada no Capitulo 2, se¢do 2.5.
Dessa forma, a estrutura de uma classe de objetos que implementa essa

representagéo ¢ dada por:

Definiciio de Classe de Objeto

Nome da Classe de Objetos | CArcFilter
Objetivo da Classe Implementar a representagdio dos Filtros das Condigdes
Booleanas
Atributos da classe Tipo de dados Descrig¢io
m Type short integer(2 bytes) Tipo do filtro (e.g.: PASSA)
m_AttribNumber long integer(4 bytes) Numero de Atributos de Filtragem
mp_AttribIndex long integer pointer Lista de indices na lista de atributos
dos atributos que formam o filtro
mp Graph CGraph Ponteiro para o grafo
Métodos da classe Tipo de retorno Descricio
Create void inicializa os parimetros internos de
pariimetros: tipo, niimero de acordo com o tipo de filtro
atributos, lista de atributos, grafo
Apply CMark Aplica o filtro na marca passada
parametros: CMark como parimetro anulando os
atributos relevantes e retornando a
marca filtrada

-72-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

6.2 - Representacio dos Elementos do E-MFG
O E-MFG possui basicamente 5 tipos de elementos estruturais boxes,
transi¢cdes, ‘gates’, arcos orientados e marcas. Na representacio da estrutura de dados
adotada os elementos do MFG foram considerados um caso particular do E-MFG.
Assim os diversos subtipos de elementos do grafo serio definidos por um

pardmetro interno de cada elemento.

6.2.1 - Representaciio das Marcas

As marcas no E-MFG Script (Capitulo 5) podem ser de dois tipos: compostas
ou simples, sendo que todas as marcas em um grafo possuem a mesma estrutura de
atributos e a presenga ou nfio de um atributo est4 associada ao valor desse atributo ser
igual ou diferente de nulo.

Dessa forma, a estrutura de uma classe de objetos que implementa essa

representagiio é dada por:

Defini¢iio de Classe de Objeto

Nome da Classe de Objetos | CMark
Objetivo da Classe Implementar a representagiio das marcas do grafo
Atributos da classe Tipo de dados Descricdo
m_CompositeMark BOOL Tipo de marca (e.g: comum =
FALSE ou composta=TRUE)
mp_AttributesArray CMarkAttribArray Lista de atributos da marca
mp_MarkList CMarkArray Lista de marcas que compdem uma
marca composta
m_WasExploded BOOL Flag se a marca composta vai ser
decomposta nas suas marcas
originais
Métodos da classe Tipo de retorno Descri¢do
Create void inicializa a marca com os atributos
parimetros: lista de atributos apropriados e atualiza as flags
ou lista de atributos e lista de internas e a lista de marcas se
marcas aplicavel
GetAttrib CMarkAttribute Retomna o atributo requisitado do
Pparimetros: indice do atributo vetor de atributos
SetAttrib void Aplica o wvalor passado como
parémetros: indice do atributo e pardmetro ao atributo especificado
valor numérico ou string
SetAllAttributesToNuli void Anula os valores de todos os
pardmetros: nenhum atributos do vetor de atributos
ResetComposition void Anula a composicio da marca
pardmetros: nenhum transformando-a em uma marca
simples
MergeMark CMark Mescla os atributos da marca atual

-73-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producéo

parfmetros; CMark (this) e a marca recebida como
pardmetro, mesclando também a
composicio de marcas
RemoveMark void Remove uma marca da lista de
pardmetros: indice da marca marcas que compdem uma marca
composta
ExplodeComposite CMarkArray pointer Retorna um ponteiro para a lista de
parmetros: indice da marca marcas de uma marca composta
colacando a flag m_WasExploded
para TRUE
GetCompositeMarks CMarkArray pointer Retorna um ponteiro para a lista de
parimetros: indice da marca marcas de uma marca composta

6.2.2 - Representacgio dos Boxes

Os boxes no E-MFG Script (Capitulo 5) podem ser dos seguintes tipos:

simples, temporizado, agrupador, dispersor, transformador e capacidade. A

implementagdo desses tipos de boxes pode ser realizada através da manutengdo dos

atributos de uma classe genérica de objeto.

Dessa forma, a estrutura de uma classe de objetos que implementa essa

representacdo € dada por:

Definicdo de Classe de Objeto

Nome da Classe de Objetos | CBox
Objetive da Classe Implementar a representag3o dos boxes do grafo
Atributos da classe Tipo de dados Descricdo
m_Type short integer (2bytes) | Tipo de Box (eg: comum,
capacidade, etc)
m_Label string Nome do Box
mp_Graph CGraph pointer Ponteiro para o grafo
mp BoxMarkArray CMarkArray Lista de marcas que o box possui
m_TimeCte long integer (4bytes) Constante de tempo do box em

segundos (comum=0)

m ActualTimeCount

long integer (4bytes)

contagem de tempo atual

m_TimerOn BOOL marca a temporizagdo ativa
m_TimerRunned BOOL marca se a condigio de
temporizacdo esta satisfeita
m_LastCheck CTime timestamp da ultima checagem de
tempo
m_Capacity long integer (4bytes) quantidade de marcas que oo box
pode conter (comum = 1)
m_FIFO BOOL identifica se a regra de saida do box
¢ FIFO ou LIFO
m_HasAnyMark BOOL Identifica se o box possui alguma
marca
m_NumAttribuitions long integer (4bytes) Nimero de atribuigdes do box

(somente aplicivel para o box
transformador)

m_NumOriginArcs

long integer (4bytes)

nimero de arcos de origem

-4

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

m_NumDestinyArcs

long integer (4bytes)

numero de arcos de destino

mp_Attribuitions

long integer pointer

lista de indices de atribuigBes na
tabela de atribui¢bes

mp_OriginArcs

long integer pointer

lista de indices de arcos de origem

mp_DestinyArcs

long integer pointer

lista de indices de arcos de destino

m_NumCondition

long integer (4bytes)

Numero de condigdes do box
(somente aplicdvel para o box
transformador)

mp_ConditionList

long integer pointer

lista de indices para as condi¢des

Métodos da classe

Tipo de retorno

Descricio

Create void inicializa 0 box com os atributos
pardmetros; tipo, nome, nimero de apropriados e afualiza as flags
arcos de origem, lista de arcos de internas e os valores default quando
origem, namero de arcos de aplicavel
destino, lista de arcos de destino,
capacidade, regra de saida(FIFO ou
LIFO), constante de tempo, nimero
de atribuiges, lista de atribuicdes,
numero de condigdes e lista de
condigdes

AddMark void Coloca uma marca no box
paridmetros: CMark
GetMarkAttribute CMarkAttribute Retoma o atributo requisitado do
parametros: indice do atributo vetor de atributos da marca
SetMarkAttribute void Aplica o wvalor passado como
parémetros; indice do atributo e pardmetro ao atributo especificado
valor numérico ou string da marca
HasMark BOOL Retorna a existéneia de marca no
pardmetros: nenhum box
HasNorMoreMarks BOOL Retorna a existéncia de N ou mais

parmetros; quantidade N de
marcas

marcas no box

GetType short integer (2 bytes) | retorna o tipo de box
parfimetros: nenhum
RemoveMark CMark Remove uma marca do box
pardmetros: nenhum
GetNumOriginArcs long integer (4bytes) | Retorna o nimero de arcos de
pardmetros: nenhum origem que chegam ao box
GetNumDestinyArcs long integer (4bytes) Retorna ¢ numero de arcos de
parametros: nenhum destino que saem do box
GetOriginArcsIndexList long integer pointer Retorna a lista de indices de arcos
pardmetros: nenhum de origem que chegam ao box
GetDestinyArcsIndexList long integer pointer Retorna a lista de indices de arcos

pardmetros: nenhum

de destino que saem do box

GetOriginTrantitionsIndexList
parimetros: nenhum

long integer pointer

Retorna a lista de indices de
transigbes de origem que possuem
arcos de saida que chegam ao box

GetDestinyTransitionsIndexList long integer pointer Retorna a lista de indices de
pardmetros: nenhum transicbes de destino que possuem
arcos de entrada que saem do box
RunTransformationEngine void Realiza as atribuigdes do box
pardmetros: nenhum transformador
IncrementTimeCount void Incrementa a contagem de tempo
par@metros: delta T atual
ResetTimeCount void Zera a contagem de tempo
pardmetros. nenhum
CheckTime BOOL Retorna se a temporizagdo ja foi

-75-

Contrelador E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

parametros: nenhum satisfeita
StartTimer void Inicia a contagem de tempo
pardmetros; nenhum
UpdateTimer void atualiza a contagem de tempo
parfmetros: nenhum

6.2.3 - Representacio dos Gates

No EMFG os gates sdo estruturas que representam regras adicionais para o
disparo de transi¢Ses. Alternativamente, pode-se interpretar o funcionamento dos
gates como responsaveis pela transmissio de dados num grafo.

Tendo em vista um sistema onde a estratégia de controle de uma planta ¢é
representada por meto de um grafo, pode-se dizer que os gates representam sinais de
entrada da planta para o controlador, tanto quanto sinais de saida do controlador para
a planta,

Assim, ¢ possivel ampliar o conceito de gates apresentado na definicio
original do E-MFG (SANTOS FILHO, 1993). Neste trabalho propde-se a inclusio de
gates de dados que sejam responsaveis por transmitir valores de atributos pertencentes
a marcas internas do grafo. Note que isso ndo viola o principio que impede o transito
de marcas entre os diversos niveis hierarquicos de controle, uma vez que so6 valores de
atributos individuais sdo transmitidos, assim a integridade dos dados é mantida.

Para o controlador, o gate é uma estrutura que armazena os diversos indices
internos dos grafo e todos os pardmetros para comunicagfo externa.

As se¢Oes seguintes abordam os seguintes t6picos:

¢ a classificagiio dos diferentes tipos de gates;
 aestrutura da classe de objetos associada aos gates;

Classificacdo dos Gates

O controlador apresentado nesse trabalho disponibiliza os seguintes tipos de
gate:

- permit internos;

- non-permit internos,

- permit internos de capacidade N;

- non-permit internos de capacidade N,
- permit externo de entrada;

- non-permit externo de entrada;

- 76 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

- permit externo de saida;

- non-permit externo de saida;

- permit externo de saida de capacidade N;

- non-permit externo de saida de capacidade N:

- dados externo de saida;

- dados externo de entrada;

Os gates sdo considerados internos quando estdo inteiramente contidos dentro

do grafo representado no controlador. S3o considerados externos quando implicam
numa comunicag@o com a planta, nesse caso ainda pode ser sub-divididos em de saida

ou entrada.

. Elemento Externo

[T = = = -

- 8 e = - = w n—l—u“lll

gate
externo de de saida
entrada
Box
gate
interno

figura 6.2.3- tipos de gate
No contexto do controlador, os gates estfio intimamemente ligados ao objeto

comunicador (item 6.6). Assim, quanto aos gates externos é necessario fazer uma
classificagéo adicional quanto a sua ativagSo.

Os gates sdo considerados passivos quando aguardam que uma aplicacéo
externa realize a2 comunicagdo. Em outras palavras, ndo fica a cargo do controlador
alterar os sinais de entrada ou saida do grafo.

Os gates sdo considerados ativos quando o préprio controlador é responsavel
por alterar os sinais de entrada ou saida.

Finalmente, quando um gates externo de entrada de dados & declarado, torna-

se necessario especificar o seu tipo de retorno, que tanto pode ser inteiro quanto

-7

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

string. Isso € necessario para se determinar qual a fungfio serd chamada para que a

conversdo de dados seja apropriada. Dessa forma, a estrutura de uma classe de objetos

que implementa essa representagio ¢ dada por:

Definiciio da Classe de Objeto

Nome da Classe de Objeto | CGate
Objetivo da Classe | Implementar a representagdo dos gates
Atributos da Classe Tipo de Dados Descrigéo
mp_Owner ponteiro p/ CGraph | ponteiro para o grafo-dono
m_Type short integer (2 tipo do gate
bytes)
m Label string nome do gate
m_Box short integer (2 box de origem
bytes)
m_Attrib short integer (2 atributo na marca do box de origem
bytes)
m_Transition short integer (2 transi¢io de destino
bytes)
m_Method string método de comunicacio
m_Parameter string parametro de comunicagio

m_Activation

short integer (2
bytes)

tipo de ativagdo

m_RetType short integer (2 tipo de retorno
bytes)
m_String string valor string de retorno
m_Boolean BOOL valor booleano de retorno
m_Integer short integer (2 valor Inteiro de retorno
bytes)
mp Cond pointer to ponteiro p/ condictonal associada
CConditional
Métodos da Classe Tipo de Retorno Descri¢do
Create
pardmetros(ponteiro p/ inicializa o gate com os valores
grafo, tipo do gate, tipo de fornecidos. A forma com que 0s
retorno do gate, label do void parametros sdo interpretados pode
gate, box de origem, variar conforme o tipo de gate que
atributo de origem, esta sendo construido.
transi¢éo de destino,
método de comunicagio,
parimetro de
comunicagéo, ativagido)
SetBOOL void altera o valor do membro de retorno

parametros : (valor booleano)

booleano

-78-

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producdio

GetBOOL() BOOL retorna o valor booleano do gate
SetInteger void altera o valor do membro de retorno
pardmetros : (valor inteiro
inteiro)
Getlnteger() short integer retorna o valor inteiro do gate
(2 bytes)
SetString void altera o valor do membro de retorno
parametros : (valor string) string
GetString() string retorna o valor string do gate
AddConditional void adiciona uma sentenga condicional ao
ardmetro(condicional) gate
RemoveConditional() void remove sentenga condicional

O membro m_Type pode assumir os seguintes valores inteiros simboélicos:

INT_PERMIT
INT NOT PERMIT

INT FULL_PERMIT

INT FULL NOT PERMIT
EXTERNAL_INPUT PERMIT
EXTERNAL_INPUT NOT PERMIT
EXTERNAL OUTPUT PERMIT
EXTERNAL_OUTPUT NOT PERMIT
EXTERNAL_OUTPUT FULL_PERMIT
EXTERNAL_OUTPUT FULL_NOT PERMIT
INT N

EXTERNAL_OUTPUT DATA

EXTERNAL OUTPUT N
EXTERNAL INPUT DATA

O membro m_Activation pode assumir os seguintes valores inteiros

simbélicos:

ACTIVE
PASSIVE

O membro m_RetType pode assumir os seguintes valores inteiros simbélicos:

NUMERICAL DATA
STRING DATA
BOOLEAN DATA

O valor interno do gate (seja inteiro, string ou booleano) representa o estado

do grafo no Wltimo momento de atualizagio. Em outras palavras, as fungdes

=79 .

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

Getlnteger(), GoAhead() e GetString() retornam o valor da titima amostragem
realizada pelo controlador.
A fungdo AddConditional() adiciona uma sentenga condicinal ao gate, de
forma a desabilitar sua saida quando é falsa. Por 'desabilitar a saida' entende-se o
seguinte;
¢ Getlnteger() retorna valor NULO;
» GetString() retorna string nula "";
* GoAhead() retorna FALSE.

6.2.4 - Representaciio das Transicdes

As transi¢des no E-MFG Script (Capitulo 5) podem ser dos seguintes tipos:
comuns, ou temporizadas, podendo ou ndo possuir restri¢des adicionais. As transi¢des
tambem sdo os elementos responsaveis pela atualizagdo do estado do grafo e sdo elas

que devem interagir com os boxes ao se efetuar o disparo de uma transigdo, cabendo

a0 jogador de marcas apenas resolver os conflitos e autorizar o disparo.

Dessa forma, a estrutura de uma classe de objetos que implementa essa

representagio ¢ dada por:

Defini¢io de Classe de Objeto

Nome da Classe de Objetos

CTransition

Objetive da Classe Implementar a representagdo das transicdes do grafo
Atributos da classe Tipo de dados Descri¢io
m_Type short integer (2 bytes) | Tipo de Transi¢do (e.g.: comum ou
temporizada)
m_Label string Nome da Transigio
mp_Graph CGraph pointer Ponteiro para o grafo
m_TimeCte long integer (4bytes) Constante de tempo da transigido em

segundos (comum=0)

m_ActualTimeCount

long integer (4bytes)

contagem de tempo atual

m_TimerOn BOOL marca a temporizagdo ativa
m_TimerRunned BOOL marca se a condigio de
temporizacdo esta satisfeita
m_LastCheck CTime timestamp da Wltima checagem de

tempo

m_NumOriginArcs

long integer (4bytes)

niimero e arcos de origem

m_NumbDestinyArcs

long integer (4bytes)

numero de arcos de destino

mp_OriginArcs

long integer pointer

lista de indices de arcos de origem

mp_DestinyArcs

long integer pointer

lista de indices de arcos de destino

m NumCondition

long integer (4bytes)

nmimere de condi¢des

mp_ConditionList

long integer pointer

lista de indices para as condigdes

m NumGates

long integer (4bytes)

nimero de condi¢des

mp_GatesList

long integer pointer

lista de indices para os gates

m_IsPossibilyFireable

BOOL

flag de condicdes satisfeitas

m IsEnabled

BOOL

flag de gates satisfeitos

- 80 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

m_IsFireable BOOL flag de restrigbes adicionais
satisfeitas
m_IsFlaggedForNextStateChange BOOL flag de mudanga de estado
m_HasCondition BOOL flag de presenca de restricdes
adicionais
m_IsASolvedConflict BCOL flag de resolucdo de conflitos
Métodos da classe Tipo de retorno Descricio
Create void imcializa a transicio com o0s
parametros. tipo, nome, mimero de atributos apropriados e atualiza as
arcos de origem, lista de arcos de flags internas
origem, numero de arcos de
destino, lista de arcos de destino,
numero de gates, lista de gates,
numere de condigdes, lista de
condi¢des, constante de tempo
GetLabel string retorna o nome da transigdo
pariimetros: void
IncrementTimeCount void Incrementa a contagem de tempo
ardmetros: delta T atual
ResetTimeCount void Zera a contagem de tempo
pardmetros; nenhum
CheckTime BOOL Retorna se a temporizagio ja foi
pardmetros: nenhum satisfeita
StartTimer void Inicia a contagem de tempo
parametros: nenhum
UpdateTimer void atualiza a contagem de tempo
arametros: nenhum
GetNumOriginArcs long integer (4bytes) Retorna o nimero de arcos de
parametros: nenhum origem que chegam na transi¢do
GetNumDestinyArcs long integer (4bytes) Retorna o nomero de arcos de
pardmetros: nenhum destino que saem da transi¢cdo
GetOriginAresIndexList long integer pointer Retorna a lista de indices de arcos

parametros: nenhum

de origem que chegam na transicdo

GetDestinyArcsIndexList
pardmetros: nenhum

long integer pointer

Retorna a lista de indices de arcos
de destino que saem da transicio

GetNumGates
pardmetros: nenhum

long integer (4bytes)

Retoma o niimero de gates ligados a
transicao

GetGatesIndexList
parametros: nenhum

long integer pointer

Retorna a lista de indices de gates
ligados 4 transigdo

IsChangeFlagged BOOL retorna o status da flag
parametros: void
SetChangeFlag BOOL atualiza e retorna o status da flag
pardmetros; BOOL
IsFireable BOOL retorna o status da flag
parametros: void
SetFireableFlag BOOL atualiza e retorna o status da flag
pardmetros: BOOL
IsEnabled BOOL retorna o status da flag
pardmetros: void
SetEnabledFlag BOOL atualiza e retorna o status da flag
parametros: BOOL
IsPossibilyFireable BOOL retorna o status da flag
pardmetros: void
SetPossibiltyFireableFlag BOOL atualiza e retorna o status da flag
pardmetros: BOOL
IsASolvedConflict BCOL retorna o status da flag

parametros: void

-81-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

SetConflictFlag BOOL atualiza e retorna o status da flag
arametros: BOOL
CanBeFired BOOL retorna se a transigio pode ou ndo
parémetros: void ser disparada na mudanga de estado
do grafo
UpdateFlags void atualiza as flags da transiciio
parimetros: void
ResetFlags void reinicializa as flags da transicio
parimetros: void
FireTransition void dispara a transi¢io de estado

pariimetros: void

6.2.5 - Representacio dos Arcos Orientados

Os arcos orientados definidos no E-MFG Script (Capitulo 5) podem ser dos
seguintes tipos: FROM_BOX ¢ FROM_TRANSITION, de acordo com a sua origem e

podem possuir filtros que realizam a filtragem seletiva dos atributos das marcas.

Dessa forma, a estrutura de uma classe de objetos que implementa essa

representacéo € dada por:

Definigiio de Classe de Objeto

Nome da Classe de Objetos

CArc

Objetivo da Classe Implementar a representagdo dos arcos do grafo
Atributos da classe Tipo de dados Descricio
m_Labet string Nome do arco
mp_Graph CGraph pointer ponteire para o Grafo
m_Origin long integer (4 bytes) Indice do Elemento de Origem
m_Destiny long integer (4 bytes) Indice do Elemento de Destino
m_Type short integer Tipo do arco
m_Filter CArcFilter Filtro do Arco (default =
PASS ALL)
Métodos da classe Tipo de retorno Descricdo

Create void inicializa o arco com os atributos
parametros: Nome do Arco, Tipo, apropriados
Grafo, Origem e Destino
SetFilter void Inicializa o filtro do arco
ardmetros; filtro do arco
ApplyFilter CMark Aplica o filtro do arco na marca
pardmetros: CMark passada como pardmetro e retorna a
marca cotn 0 atributos filtrados
GetOrigin long integer Retorna o indice do elemento de
parimetros: void origem
GetDestiny long integer Retoma o indice do elemento de
parametros: void destino
SetOrigin void Atualiza a origem do arco
parametros: indice do elemento
SetDestiny void Atualiza o destino do arco
parametros: indice do elemento
GetLabel string retorita 0 nome do arco
ardmetros: void
GetType short integer retorna o tipo do arco

-82.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

[parametros: void | f

6.3 - Representaciio do Grafo

A fim de se representar o grafo é necess4rio agrupar os elementos que o
formam através de listas de elementos do mesmo tipo. Logo, serd necessdria a
codificagdo de classes de objetos que implementem essas listas para cada tipo de
objeto. Para permitir a alocagdo dinimica de memoéria, serfo utilizadas listas
simplesmente ligadas como a descrita no modelo da figura 6.3-1.

Para se evitar confuséio quanto a nomenclatura, foi definido que uma lista para
uma determinada classe tera o mesmo nome que essa classe de objetos concatenado
com a palavra ‘Array’, portanto uma lista de marcas recebera o nome de CMarkArray

(pois a marca ¢ implementada pela classe CMark).

R N N 2 N e—

Né6 Né6 N6 N6
Dados i Dados 1 Dados Dados
Dados Dados Dados A4 Dados
e rd Fd 8 i
e &) \) | /

figura 6.3-1: Estrutura de dados de uma lista simplesmente ligada

Adotando esse agrupamento de objetos, tem-se o grafo representado por um
conjunto de listas para os seus elementos estruturais(boxes, transigdes, arcos e
portas), uma lista contendo os ‘femplates’ dos atributos de marca, uma lista de
atribuigdes ¢ uma lista de condi¢des booleanas as quais os elementos estruturais se
referenciam.

Portanto, a representagdo do grafo serd realizada pela seguinte classe de
objeto:

Defini¢éio de Classe de Objeto

Nome da Classe de Objetos | CGraph
Objetivo da Classe Implementar a representagdo do grafo
Atributos da classe Tipo de dados Descricio
m_Title string Titulo do Grafo
m_Descr string Descri¢do do Grafo
mp BozxesTable CBoxArray pointer Lista de boxes
mp_TransitionsTable CTransitionArray pointer | Lista de Transi¢des
mp_ArcsTable CArcArray pointer Lista de Arcos
mp_GatesTable CGateArray pointer Lista de Gates
mp_AttribTemplTable CMarkAttribArray Lista de ‘Templates’ de Atributos
pointer de Marca

-83-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

mp_AttributionsTable

CAttributionArray
pointer

Lista de Atribuigtes

mp_ConditionsTable

CConditionArray pointer

Lista de Condigdes

Métodos da classe Tipo de retorno Desericio
Create void inicializa o grafo
pardmetros: Titulo e Descricio
GetBoxes CBoxArray pointer retorna ¢ vetor de boxes
pardmetros: void
GetTransitions CTransitionArray pointer | retoma o vetor de transiges
arametros: void
GetArcs CArcArray pointer retorna o vetor de arcos
pardmetros: void
GetGates CGateArray pointer retorna o vetor de gates
arametros; void
GetAttribTemplates CMarkAttribArray retorna o vetor de templates de
parametros; void pointer atributos de marca
GetAttributions CAttributionArray retomna o vetor de atribuiches
pardmetros: void pointer

GetConditions
pardmetros: void

CConditionArray pointer

retomna o vetor de condigdes

GetBoxesConnectionDump void Faz o dump das ligacBes entre os
pardmetros: CLinesArray pointer to boxes e as transigdes
DumpLineTable

GetBoxesPropertiesDump void Faz o dump das propriedades dos

parémetros: ClinesArray pointer to
DumpLineTable

boxes ¢ suas marcas

6.4 ~ Interpretador

O interpretador € o objeto responsavel por tranformar a representagfio textual

E-MFG Script (capitulo 5) na representagio interna de objetos definida na segdo 6.2.

Para especificd-lo ¢ necessario antes definir quais sio0 oS passos para a

execucdio dessa tarefa. Em termos gerais ¢ preciso:

1. verificar a inclusio de arquivos e montar uma tabela de inclusdo, checando

para néio haver recursio que causaria loops infinitos;

2. para cada arquivo da lista de includes, ler o arquivo texto, eliminando os

espagos em branco, separando os comandos e ignorando os comentarios.

O resultado ¢ guardado numa tabela de strings;

3. processar a tabela do arquivo, avaliando cada se¢do conforme a sintaxe

apresentada no capitulo 5. Para cada se¢io uma nova tabela de strings é

construida com a adigfio do prefixo especificado na tag <INCLUDE> do

arquivo especifico, correspondendo aos parimetros de constugdo de cada

objeto. Ao final dessa etapa, h4 uma tabela literal para cada um desses

-84 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

elementos: atributos, atribui¢des, condicionais, boxes, transi¢des, arcos,

gates e marcas iniciais do grafo;

4. para cada tabela literal construida na etapa anterior executa-se uma

referéncia cruzada que transforma os nomes dos elementos (string) em

indices (inteiros). Essa referéncia inclui a checagem de nfio duplicagéio de

nomes entre os diversos elementos.

5. caso ainda haja arquivos a processar na tabela de includes, retornar ao

passo 2;

6. com base nos indices obtidos na etapa anterior os objetos séo criados e

adicionados nas listas internas do CGraph.

Observe que o interpretador € responsavel por manter a consisténcia do grafo

representado pelo arquivo de entrada em E-MFG Script.

detectar problemas como:

O interpretador deve

e erros de digitagdo, ou auséncia de se¢des obrigatérias;

o referéncias a elementos ndo declarados em suas respectivas segdes.

As tabelas literais s@o na verdade matrizes bi-dimensionais de strings, ou em

outras palavras arrays de arrays de string, Cada linha corresponde a um elemento E-

MFG declarado no arquivo de entrada.

Dessa forma, pode-se definir a estrutura do objeto interpretador:

Definiciio de Classe de Objeto

Nome da Classe de Objetos

Cinterpreter

Objetivo da Classe

Implementar a representagéo do grafo

Atributos da classe Tipo de dados Descricio
mp_Graph CGraph pointer ponteiro para o grafo a ser
construido
m_FileTable array de string tabela do arquivo de entrada
m_AttribTable matriz de string tabela literal do template de

atributos

m AtiributionTable

matriz de string

tabela literal das atribuigdes

m CondTable

matriz de string

tabela literal das condicdes

m BoxesTable

matriz de string

tabela literal das boxes

m TransitionsTable

matriz de string

tabela literal das transi¢des

m ArcsTable

matriz de string

tabela literal dos arcos

m GatesTable

matriz de string

tabela literal dos gates

m_MarksTable

matriz de string

tabela literal das
iniciais

marcas

title

string

titulo do grafo

-85~

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

description string descricdo do grafo
Métodos da classe Tipo de retorno Descricio
Compile BOOL gerencia a ordem de chamada
pardmetros. nome do arquivo das demais fungdes
¢ ponteiro para o grafo
Read BOOL 1€ o arquivo de entrada ¢ cria
pardmetros: nome do arquivo a tabela literal dos comandos
BuildTables BOOL constroi as tabelas literais l
pardmetros: void
CrossReference BOOL realiza a referéncia cruzada e

pardmetros: void

cria 0s objetos

Essa ¢ a interface externa da classe Clnterpreter, que apresenta uma série de

outras fungdes internas responsaveis pela leitura das linhas de comando, procura em

tabelas literais, interpretagiio € montagem de sentengas condicionais.

Dentre essas fungdes internas ¢ interessante focar a atencfo naquelas que

interpretam e constroem as sentengas condicionais, uma vez que conforme

especificado no capitulo 5, essas apresentam uma sintaxe distante da representagio

interna em objeto.

A funcfio chamada BuildCond() recebe como pardmetros uma referéncia ao

condicional a ser montado e a string contendo a expressdo definida no FAFG Script.

Essa fungio pode ser dividida em duas partes:

¢ inicialmente é determinado se a senten¢a condicional € simples ou

composta,

® caso seja simples, aciona-se a primeira parte:

¢ executa-se a divisdo dos itens L-Value, Operator e R-Value;

» realiza-se a referéncia cruzada desses itens € a montagem do

condicional;

¢ a fungo retorna.

* Caso seja composta, aciona a segunda parte:

e exftrai-se uma sub-string correspondente a sentenga condicional

dentro delimitada pelo parénteses de nivel mais alto;

* chama-se recursivamente a prépria BuildCond() com a sub-string

como pardmetro,

e quando o BuildCond() acima retorna o condicional criado €

adicionado numa lista local;

- 86 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

* como se trata de uma sentenga composta, procura-se pelo operador
logico e adiciona-se este 4 outra lista local;

® repete-se 0 processo acima para os todas as sub-strings dentro do
nivel local de parénteses;

* 2o chegar aqui, tem-se uma lista de condicionais com # elementos
¢ uma lista de operadores com (n-1) elementos;

¢ monta-se a arvore correspondente s listas acima, uma vez que
todos esses condicionais pertencem ao mesmo nivel de parénteses;

* a fungdo retorna.

Note que no caso de uma sentenca simples, somente a primeira parte da
fungdo serd acionada. Caso seja composta, sucessivas chamadas recursivas sio feitas
até que se encontrem os condicionais simples. A propria estrutura da heap de
execucdo ¢ responsdvel por representar a ordem de criagio da arvore bindria.

Na verdade, o processo executado pela BuildCond() é um pouco mais
complicado. Isso se deve a alocacio de memoria, especialmente por causa da
recursdo. Ao final da cada chamada de fungdio, seus membros locais sdo destruidos e
a memdria associada é perdida.

Essa dificuldade pode ser ultrapassada com o uso cuidadoso dos operadores de

copia e em especial do mecanismo de referéncia disponivel no C++.

6.5 - Gerenciador de Marcas

O Gerenciador de Marcas consiste em um objeto que observa o estado atual do
grafo e executa os passos necessarios para a evolugdo para o préximo estado. No
entanto, o Gerenciador de Marcas nfo tm como avaliar as condigdes do meio
externo ao grafo que ele controla, cabendo essa tarefa a um segundo objeto chamado
de Controlador de /O, de acordo com o modelo conceitual do controlador descrito na
figura 4.3-1. Logo, o escopo do trabalho do Gerenciador de Marcas se restringe a
uma unica evolugdo de estado, sendo necessario que o nivel hierarquico superior no
modelo de dados do controlador (ou seja a aplicagéio - vide figura 6-1), faga as
chamadas de fung¢do adequadas para a atualizagdo dos estados dos sinais externos ao
controlador.

Dessa forma, o objeto Gerenciador de Marcas deve apenas possuir um

ponteiro para a representagfio do grafo e uma seqliéncia de métodos que executem o

-87-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

ciclo de disparo. Outro aspecto importante é que a avaliacdo das condigdes de disparo
de transi¢do € realizada internamente pela propria transi¢do. O Gerenciador de
Marcas apenas requisita a atualizagdo do ‘status’ da transi¢do sem precisar conhecer
seu tipo ou suas restrigdes, que sdo tratados localmente. Assim, o papel fundamental
do Gerenciador de Marcas ¢ a resolugdo de conflitos (onde se necessita de uma visdo
global do grafo) e a requisi¢o de disparo das transigdes ainda dispardveis apos a
resolugiio do conflito.
O Gerenciador de Marcas deve resolver os conflitos ndo arbitrados no grafo. O
algoritmo de resolugo de conflitos é o seguinte:
1 - Enquanto ndo foi alcangado o final da lista, percorra a lista de pré-
condigdes;
2 - Se 0 box € um box conflito de saida identifique as transigdes em conflito;
2.1 - Se ndio existirem transigdes marcadas como vencedoras de
conflito;
2.1.1 - para cada transig8io em conflito & atribuida uma chance
igual de disparo;
2.1.2 - sorteia-se uma transi¢do vencedora do conflito e a marca
como tal;
2.1.3 - desabilita as demais transi¢des em conflito;
2.1.4 - retorna a0 passo 1;
2.2 - Se existirem transigdes vencedoras de conflito a primeira
transigdo vencedora da lista é marcada como vencedora e as demais
desabilitadas, retornado em seguida ao passo 1;
3 - Se o box ndo ¢ um box conflito retorne ao passo 1
4 - Enquanto ndo foi alcangado o final da lista, percorra a lista de pOs-
condigfes;
5 - Se o box € um box conflito de entrada identifique as transigdes em
conflito;
5.1 - Se nfio existirem transi¢es marcadas como vencedoras de
conflito;
5.1.1 - para cada transi¢io em conflito ¢ atribuida uma chance

igual de disparo;

-88-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

5.1.2 - sorteia-se uma transigéio vencedora do conflito € a marca

como tal;

5.1.3 - desabilita as demais transi¢des em conflito;

5.1.4 - retorna ao passo 4;

5.2 - Se existirem transicdes vencedoras de conflito a primeira

transi¢fio vencedora da lista ¢ marcada como vencedora € as demais

desabilitadas, retornado em seguida ao passo 4;

6 - Se 0 box ndo é um box conflito retorne ao passo 4;

Tendo esses aspectos do modelo do Gerenciador de Marcas em vista, tem-se a

seguinte estrutura para o objeto:

Defini¢do de Classe de Objeto

Nome da Classe de Objetos

CMarkManager

J_L SeekAndSolveOutputConflicts
d

rimetros: void

Objetivo da Classe Implementar a representacio do Gerenciador de Marcas
Atributos da classe Tipo de dados Descricdo
mp Graph CGraph pointer ponteiro para o grafo
m_ActualTime CTime TimeStamp atual
m_GraphCycleTime CTimeSpan Duragéo do dltimo ciclo de controle
m_FileLog BOOL Flag para armazenar ou ndo o
disparo de transi¢des em disco
Métodos da classe Tipo de retorno Descricio
Create void inicializa o Gerenciador de Marcas
arimetros: ponteiro para o Grafo
SetupTransitions void percorre a lista de transicdes e
pardmetros: void atualiza as flags de dindmica de
disparo
FireTransitions void dispara as transi¢des marcadas como
pardmetros: ponteiro para o disparaveis
arquivo de log
LogGraph void realiza um dump em arquivo texto
pardmetros: ponteiro para o do grafo
arquivo de log
SetFileLog void atualiza a flag booleana para logar
arametros: valor booleano ou ndo o disparo de transicdes
IsLogging BOOL retorna o valor da flag booleana para
arametros: void logar ou ndo o disparo de transicdes
GetTimeStamp string retorna a TimeStamp Atual
pardmetros: void
GetTimeSpanStamp string retorna o tempo transcorrido desde
arametros: void o tltimo cielo de controle
GetLastFireTime CTime retorna a TimeStamp Atual
arametros: void
GetLastCycleSpan string retoma o tempo transcorride desde
pardmetros: void o ultimo ciclo de controle
SeekAndSolveConflicts void resolve as transigdes em conflito
pardmetros: void
SeekAndSolvelnputConflicts void resolve os conflitos de entrada
pardmetros: void
void resolve os conflitos de saida

~89.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

LogFiredTransition void faz o log em um arquivo texto d as
pardmetros: ponteiro para o transigGes disparadas
arquivo e Nome da transicio

6.6 - Controlador de I/O

O controlador de I/O € responsavel por realizar a comunicagdo com o mundo
externo, ou seja, ler os sinais dos ‘gates’ de entrada e disponibilizar os sinais dos
‘gates’ de saida para outras aplicages.

Para que o controlador de VO seja o mais genérico possivel, sua estrutura
devera permitir a insergio de médulos que permitam a comunicagio através de varios
protocolos.

6.6.1 — Comunica¢io DDE

Dentro da proposta de controlador adotada nesse trabalho, especificou-se a
implementagéo da comunicago através de DDE, que ¢ padrio para a plataforma
Windows.

No compilador VC++ 4.0 toda comunicagiio DDE é feita através de uma
biblioteca chamada DDEML (DDE Management Library). Para funcionar como
servidor, fica a cargo de cada aplicagéio escrever uma fungfio de ‘callback’ que trate a

requisi¢do de dados de acordo com a figura 6.6.1-1.

(Aplicagiio: Grafo

N
(Tépico: Gate N /;DE CaliBack
Requisicio
Item: Nulo |~ --=-semeeo-e- N
Box!Atributo :::::::: DDE DataHandle

L 4 »

Figura 6.6.1-1 - Estrutura DDE para o controlador

A fungéio DDE Callback associada ao controlador tem como missdo
disponibilizar os dados para outras aplicages interessadas em receber sinais ou

-90 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

escrever sinais do grafo. No caso da estrutura de gates definida no capitulo 5, a DDE
Callback est4 diretamente ligada aos gates passivos.

A biblioteca DDEML.H define uma mensagem para cada uma dessas
operagoes:

e XTYP_REQUEST, para receber dados;
¢ XTYP POKE, para escrever dados.
Ao receber uma mensagem XTYP_REQUEST, o procedimento na DDE Callback é o
seguinte:
* percorre a lista de gates, para determinar se existe um gate com o
nome do item;
caso exista, checa se esse gate é do tipo passivo;
caso seja, recupera o valor do gate;
» realiza a transformagéo para um DDE Data Handle de acordo com
o tipo do gate.

Ao receber uma mensagem XTYP_POKE, o procedimento na DDE Callback &
0 seguinte:

* percorre a lista de gates, para determinar se existe um gate com o
nome do item;
caso exista, checa se esse gate é do tipo passivo;

* caso seja, interpreta 0 DDE Data Handle de acordo com o tipo do
gate,

e atualiza o valor do gate.

Por outro lado, o controlador também deve ler dados de outras aplicagdes,
funcionando como um cliente. Nesse caso o compilador ndo impde nenhuma
condigdo quanto ao nome e estrutura das fungdes (essas s3o as fungdes associadas
a0s gates ativos).

Para implementar o cliente DDE é uma boa opgo encapsular as fungdes do
DDEML dentro de um objeto, tomando como pardmetro bdsico uma string do tipo:
“Aplicagdo! Topicolltem”. O objeto se encarrega de dividir essa string, estabelecer a
comunicagio, recuperar o DDE DATA HANDLE e realizar a conversio para o tipo
correspondente. Observe que o tnico formato de ‘clipboard” utilizado ser4 CF_ TEXT
(que ¢ o formato mais utilizado), mas isto fica transparente para o usudrio j& que

todas as conversdes de dados sdio feitas internamente ao objeto.

Definicéio de Classe de Objeto

Nome da Classe de Objetos CDDESocket
Objetivo da Classe Encapsular 0 acesso a DDEML.H
Atributos da classe Tipo de dados Descricio
m_title string nome do grafo

-91 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

|_pardmetros: (valor inteiro)

m_AppName string nome da presente aplicaqﬁoj
m_App string nome da aplicagfio servidora
m_Topic string nome do topico no servidor
| m_Item string nome do item no servidor
m_Registered boolean flag de registro
m Connected boolean flag de conexdo
m_timeout short integer (2 | tempo para TIMEQUT em ms |
bytes)
m_error DWORD D do erro DDE
m_idInst DWORD ID da instincia DDE
m_hConv HCONV handle para a conversagio
Métodos da classe Tipo de retorno Descricdo =
RegisterApp void registra o grafo como uma
ardmetros: nome do grafo aplicacdo DDE
GetString string retorna a string
pardmetros: string de correspondente ao DDE
comunicagio DATA HANDLE obtido na
comunicagiio
Getlnteger integer retorna 0 inteiro
pardmetros: string de correspondente a0 DDE
comunicacio DATA HANDLE obtido na
comunicagio
GetBOOL BOOL retorna 0 BOOL
parametros: string de correspondente a0 DDE
comunicagio DATA HANDLE obtido na
comunicagio
PutString void coloca o wvalor string na
pardmetros: (string de aplicago, tépico e item
comunicaggo, valor string) determinados pela string de
comunicacgio
Putinteger void coloca o valor inteiro na
parimetros: (string de aplicagio, tdpico e item
comunicagio, valor inteiro) determinados pela string de
comunicagdo
PutBOOL void coloca o wvalor bool na
pardmetros: (string de aplicagiio, tdpico e item
comunicagio, booleano) determinados pela string de
comunicagio
SetTimeOut void determina qual o tempo de

TIMEOUT em ms

A estrutura do controlador de /O deve inchuir uma mstincia do objeto
CDDESocket e uma fungiio DDE Callback global para que o controlador E-MFG

possa funcionar tanto como um servidor quanto como cliente DDE.

-92 .

Controlador E-MFG Para Sistemas Integrados e Flexiveis de Producio

6.6.2 — Ciclo de Update

O ciclo de update’ executa leitura dos sinais externos e a atualiza og valores

internos dos gates’ de saida

6.6.3 — Estrutura Interna
A definigso do controlador de I/O ficg da seguinte forma:
Definiciio de Classe de Objeto

Nome da Classe de Objetos CCommunicator
Descrigdio

D D W pONteiro para o grafo
%

update dos dados
valor do delta-tempo em
segundos para o tfiltimo ciclo
de comunicacio
valor do delta-tempo em
segundos para o {iltimo ciclo
de controle

%
_mmm- nome do arquivo de log
mmm_‘m_ flag do arquivo de log
Descrigdo

UpdateAllGates() BOOL atualiza todos og valores dos
gates, tanto internog quanto
externos

GetLastCommCycleDeltaO long integer (4 bytes) | retorna 08 segundos de

duragdo do ultimo ciclo de
GetLastControICycleDelta () | long integer (4 bytes)
GetLastUpdate()

cominicacio
-93.

short integer 2
bytes)

short integer (2
bytes)

retorna o segundos de duragdo
do 1ltimo ciclo de controle
retorna 0 CTime
correspondente a0 yltime
update

loga os erros de comunicacio

l

Controlador E-MFG Para Sistemgas Integrados e Flexiveis de Producio

Um comentirip final sobre g estrutura definida fica por conta do tratamentg

® umamensagem ¢ apresentada ag usuario, aguardando confirmaggo

para prosseguir;

formato da mensagem de errg & dado por:
[diaimés/ang Izora:mz‘nuto:segundo] - DDE Comunicg tion Error - String de Errg
Assim, pode-se analisar 0S erros de Comunicacio o bosteriori, sem

interromper a execucdo do ciclo de controle,

-94.

6.7 - Interface
O formato fing] da interface no esta ainda definido, mag pode-se especificar
algumas Caracteristicas desejéveis, tais como permitir:
® avisualizaciio dag tabelas literajs de elementos;
* avisualizaggo textual da dinamica do grafo;

* aexecugio Passo-a-passo do cicio de controle;

Untitied - F tha EMFG Controller
grq_.xivo é_;c"?'es Literal Q_ump OpgBas Help

Dafinir Compilar Acionar Opgfiss ‘
Script ’ Cortrale I DOE Help
InformacBes de Grafo Tabelas

Ami\’u: m Du’mp & ' v'
Noms : ,TESTE" Literal : l.ﬁ:quivo ~] ;'

-95.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Ciclo de Controle [| '

Ciclo de Comunicagso
Mornenio Adual :
Delta Geral
Cicla de ComunizagSo | Disparo de TransigBes
QE'] Ultimo Delta : | @ (kime Delta :
Passo Simplas i Contirwio l

Untitled - Etna EMIG Controller
Arquivo AcBes Literal Dump OpgBes Help

Drefinir Compilar Acionar Opgles

Script & Montar Cantrole BDE

Informacdes do Brafo Tabelas

Diuap |Geral j
Moms: [TESTE Litesal : | x|

0 CABADA TEMP_BOX (1] H#Marks=0 =
1 CARREGA TEMP_BOX [2) BMarks=0 —
Z |DESCARREGA TEMP_BOX (1) Hidarks=l
3 |MAGIN CAPACITY_BOX{FIFO} HMarks=6 PART =B
4 PART =B
5 PART =B
B PART =B
7 PART = &
8 PART =B
3 (MAGDUT CAPACITY_BOX{LIFO) HMarkcs=0
10 MDISP COMMON_BOX HMarks=1 PART =
11__|PRFPARADA TFMP_ROX 1 HiMarks=i h

Figura 6.7-3 — Exemplo de 'dump’ de propriedades do grafo

Maiores detalhes quanto 4 implementagdo da interface pode ser vistos no
Apéndice II.

- 96 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

7 - Estrutura do Controlador

Conforme descrito anteriormente, o programa do controlador é constituido por
uma estrutura hierdrquica de dados (figura 6-1), onde no topo da hierarquia
encontram-se¢ os objetos responsdveis pelo comportamento macroscopico do
controlador, € € com esses objetos que o nivel da aplicagdio deve interagir a fim de
realizar a ponte entre o usuario e 0 programa de controle descrito na representag¢io

interna de dados.

7.1 - Ciclo Geral do Programa

A figura 7.1-1 apresenta um grafo E-MFG que descreve o comportamento
macroscopico esperado do nivel do programa do controlador identificado como
aplicagio na figura 6.1. Este ¢ o comportamento para o controlador funcionando em

modo automitico (o modo ‘single-step’ exige que o usudrio autorize cada ciclo de

controle).
Usudrio
Interpretador
..... e
arquivo
évalido '
— - R
ifn‘:rgl;i:r?pt Compila e constroi P?“";;ﬂ
a Representagio ogr
....... doPrograme W .. Interna do Grafo Controlador
! 8e o arquivo : fi do
 posvilide Y - Contoladot de 1) de /O
Gerenciador
avisa o
e de Marcas
Atualiza os Executa um
inni | @ Dacen
Préximo Ciclo

figura 7.1-1 - Modelo Global do Programa Controlador
A fim de se executar um programa de controle, o usuario deve dar um

comando de leitura do programa de controle e autorizar 2 sua compilagio. Se o
arquivo do programa for um arquivo invalido o programa deve exibir uma mensagem

de erro, caso contririo uma vez autorizado pelo usudrio o programa deve construir a

-97.

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

representagdo interna do grafo (através do objeto Interpretador). Uma vez construida a
representagdo interna o usudrio deve autorizar a execugfio do programa. Uma vez
autorizada a execugfio, a aplicagfio fara uma chamada do Controlador de /O para que
este atualize os sinais da via de dados e este ao terminar a atualizagfo autoriza a
aplicagdo a chamar o Gerenciador de Marcas para a execugdo da evolugio para o
proximo estado do programa de controle. Apos a evolugiio de estado a aplicagio
podera novamente chamar o Controlador de I/O e repetir o ciclo, até que o usudrio
ordene a finalizagdo do programa. Neste caso o cicle de controle em andamento serd

executado até o final entdo o programa ser4 finalizado.

7.2 - Ciclo de Controle

Durante o ciclo de controle, a aplicag@o é responsavel por chamar na ordem
adequada os métodos do Controlador de /O e do Gerenciador de Marcas, de modo
que a evolugdo dinfmica do grafo se dé corretamente. De maneira resumida, a figura
7.2-1 ilustra o ciclo de controle com as chamadas de métodos desses objetos no
dominio da aplicagio ¢ um exemplo da chamada de métodos no dominio do
Gerenciador de Marcas (durante a execugdo da fungfio FireTransitions). Deve-se notar
que para a aplicagdo a estrutura de dados de representagdio intema do grafo é
transparente, ou seja apenas os métodos do Gerenciador de Marcas e do Controlador
de /O que podem alterar os elementos do grafo. Da mesma maneira, apenas as
transi¢Ges do grafo ¢ que podem efetuar a dindmica de disparo e podem interagir com
os outros objetos do grafo (retirando a marcagdo das pré-condigdes, aplicando os
filtros dos arcos e marcando as pds condiges). Garante-se, dessa maneira, a
manutengio da hierarquia de objetos proposta.

E importante notar que a hierarquia também ¢ mantida pelos elementos de /O
do grafo, ou os ‘gates’, que a cada ciclo possuem apenas um valor armazenado
(booleano ou ndo). Como os ‘gates’ ndo apresentam métodos que os permitam se
auto-atualizar, eles podem ser tratados indistintamente (a menos da sua func3o:
inibidor, habilitador ou transporte de dados) pelos outros elementos do grafo. Neste
modelo, a atualizagfio de todos os gates fica a cargo do controlador de /O, o que
permite que futuramente novos métodos de I/O sejam implementados sem se alterar a

estrutura do grafo.

-98 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produciio

/ Aplicacdo \ 4 FireTransitions i

[Inicio]

[UpdateAllGates | [Seleciona |
| SetupTransitions | | FireTransition]
[SeekAndSolveConflicts] [LogFiredTransition|
| FireTransitions | (Proxima Transicdo]
[

Proximo Ciclo | / \ j

C Aplicagio Representacio da Estrutura
<> Controlador de 1/0 da Transigéio
<> Gerenciador de Marcas Chamada de Fungfo ou Subrotina
Chamada de Fungio ou pelo Gerenciador de Marcas
Subrotina pela Aplicacio

figura 7.2-1 - Ciclo de Controle e Atividades do Gerenciador de Marcas ¢ Controlador de I/Q

Torna-s¢ claro, observando a figura, que o Gerenciador de marcas e o
Controlador de 1/0 s6 possuem a visdio do estado atual do programa de controle,
ficando a cargo da aplicagio controlar se o programa ¢ executado em um loop
continuo ou passo a passo. Logo, esse tipo de controle fica mais proximo da camada
de software que realiza a interface com o ususrio, nio sendo relevante a estrutura de
dados que representa o grafo ou executa a sua dindmica. Este exemplo ilustra o
encapsulamento de dados que se pretende obter na codificagdo do controlador, onde
cada objeto implementado possui métodos que estiio dentro do seu dominio de dados
(ou nivel hierarquico) ¢ pode chamar métodos do nivel imediatamente inferior. A
unica excegéo para esse modelo € dados ¢ o objeto Interpretador que pode chamar as
fungdes de criagBo de todos os tipos de elementos do grafo, bem como acessar as
listas de elementos do objeto grafo, além de sua estrutura de dados interna (figura
6.1).

-99 .

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produgfo

8 - Seqiiéncias de Testes

A fim de se evitar uma maior complexidade para a realizacdio dos testes, a
seqiiéncia de testes foi realizada de forma a validar o funcionamento de cada médulo
funcional do controlador separadamente sempre que possivel. A abordagem adotada
para a realizagfio dos testes foi a seguinte:

a) Validago da seqiiéncia de chamada de fung3es e métodos de cada objeto.

b) Validagio da construgdio das estruturas de dados auxiliares (e.g. tabelas
literais utilizadas para o primeiro nivel de compilagio do programa de controle)

¢} Validagdo da construgdo dos objetos e seus relacionamentos (e. g. tabelas
de ‘dump’ de conexdes e propriedades dos elementos.

d) Validagéio do algoritmo de gerenciamento de marcas (evolugfio de estado),
através do aumento continuo da complexidade dos grafos (utilizagdo de elementos
estruturais mais sofisticados).

e) Validagio do médulo de comunicagéo (Controlador de I/O)

f) Validagio do passo de controle (seqiiéncia de agdes necessarias a evolugio
de estado para a integragdo do Controlador de I/O e Gerenciador de Marcas)

h) Validag¢éo do modo de controle em ‘Zoop’ continuo.

Alguns dos testes realizados encontram-se no Apéndice I, este conjunto de
testes demonstra a filosofia de testes adotada (de complexidade crescente). Ndo foram
incluidos todos os testes realizados neste apéndice para se evitar a redundéncia, pois
foram realizados testes ao longo de todo o desenvolvimento, utilizando diferentes
versdes do E-MFG Script com diversos grafos simples e complexos que agregariam
pouco valor a este documento. Devido a engenharia de software adotada, a arquitetura
orientada a objetos utilizada no desenvolvimento do programa permitiu a validagio
progressiva da funcionalidade, uma vez que o aumento de complexidade representa
apenas a adigdo de um método novo associado a um novo valor de uma caracteristica
do objeto ¢ o encapsulamento de dados inerente a esta arquitetura de

desenvolvimento permite isolar os métodos ja validados daqueles que estdio sendo

agregados.

- 100 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

8.1 - Testes de Montagem da Representac¢iio Interna
Nestes testes serd verificada o funcionamento do médulo interpretador e da
estrutura de dados.
Serdo utilizados exemplos comuns de grafos, com gradual aumento na
complexidade nas conexdes e usando maior nimero de elementos E-MFG.
Nessa fase deseja-se testar:
e a validade do E-MFG Script como uma representagio dos
diferentes tipos de grafo possiveis;
¢ a capacidade do objeto Clnterpreter de localizar falhas na
consisténcia do grafo (nomes duplicados e referéncias faltosas);
¢ 0 gerenciamento da memdria, com a liberagio apds o término do
programa de todas as estruturas alocadas;

e aconexdo entre os elementos E-MFG.

8.2 - Testes de Dinfimica de Disparo
Nesta fase serd testado com mais intensidade o objeto CMarkManager,
responsavel por gerenciar a dindmica de disparo das transigSes. Para tanto, utiliza-se
um botdo STEP na interface que permite a execugfo do apenas um ciclo de controle.
Com grafos cujas dindmicas de disparo sejam conhecidas por simulagfo
manual, testa-se o seguinte:
e aavaliagdo das sentengas condicionais;
¢ arealizagfo das atribui¢des;
¢ o funcionamento dos gates infernos;
* as condigdes de disparo;

e aresolugfio de conflitos.

- 101 -

Controlader E-MFG para Sistemas Integrados e Flexiveis de Produgiio

8.3 - Testes de Comunicacio

Os testes de comunicagdo devem validar o funcionamento dos gates externos,
tanto de saida quanto entrada. Serfio feitos testes entre instincias do controlador,
representando diversos niveis hierarquicos de um sistema.

Também serdo feitos testes de comunicagfio com outros aplicativos, tais como

o Excel, ou outras aplicagdes especificas escritas em Visual Basic ou VC++.

8.4 - Validacéio Geral

Com o funcionamento do controlador testado nas fases anteriores, a validagio
geral serd feita em conjunto com a simulagio de um sistema real.

Para tanto serdo utilizados programas de simulagdo que disponibilizem seus

dados via DDE e sejam aptos para controle por E-MFG.

- 102 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

9 - Comentarios e Conclusoes

Neste trabalho buscou-se especificar uma representagéo textual para os grafos
E-MFG, a fim de se utilizar essa representagdo textual como linguagem de
programagio do controlador desenvolvido.

Durante a fase de levantamento dos requisitos da descrigéo textual do E-MFG
e o confronto destes requisitos com as caracteristicas necessdrias ao controle de
sistemas flexiveis de produgdo, foram levantadas as propostas de methoria na
representagdo do E-MFG para a especificacdo de sistemas de controle (segéo 3.3).

De um modo geral, essas propostas tiveram por objetivo tornar a codificagéio
do algoritmo de controle mais clara e menos susceptivel a erros, praticamente nio
afetando a metodologia proposta inicialmente. No entanto, uma das propostas
introduziu um novo elemento estrutural 4 representacio do grafo, os arcos de sinal de
entrada (ou arcos de dados), que se aplicam para alterar dinamicamente a estratégia
de controle (ou seja uma inscrigio em vm box transformador, transi¢éo, ou porta) a
partir de um dado coletado externamente ao grafo. Portanto, os arcos de sinal de
entrada possibilitam uma maior integrabilidade, flexibilidade e capacidade de
representagdo do grafo, permitindo a parametrizaco da estratégia de controle (vide a
figura 3.3-1b). Por outro lado, a introdugdo deste elemento néo altera o mecanismo
de disparo das transigtes (continuando validos os 3 niveis de decisdo para o disparo
discutidos na seglo 2.5), ou seja, nfio altera as caracteristicas de evolugfo dindmica
do grafo preservando a caracteristica de Sistema de Eventos Discretos do E-MFG ¢
suas propriedades (como ‘safeness’, por exemplo).

Em relaglio ao E-MFG Script (Capitulo 5), procurou-se desenvolver a
linguagem de forma que as declaragdes dos elementos do grafo estivessem muito
claramente definidas. Esta atitude foi tomada com o intuito de tornar a descricdo do
grafo o mais mecanizada possivel a fim de se facilitar a construgdo do grafo através
de uma futura Interface Gréfica de Programacgio (que se encontra fora do escopo
deste trabalho), pois € evidente que a representacio grafica do sistema é muito mais
concisa e facil de ser manipulada pelo projetista do sistema de controle do que uma
representagio textual. O E-MFG Script, ainda apresenta a caracteristica de agrupar
todos os elementos de transporte de dados e sinais de controle internos e externos ao

grafo em um Wnico bloco de comandos, sem no entanto perder a representatividade

- 103 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produciio

desses elementos estruturais do E-MFG (e.g. portas habilitadoras internas, arcos de
sinal de saida, etc.), conforme a discussdo da segdo 5.2.8.

A partir da especificagio do controlador e do E-MFG Script, construiu-se um
modelo de dados que visando o maior encapsulamento possivel (Capitulo 6), a fim de
permitir a reutilizag@io do cédigo gerado em outras aplicagdes, servindo o controlador
como o micleo de um futuro ambiente de projeto de sistemas de controle para SEDs
(que envolveriam ferramentas de simulagSio baseadas no controlador, geragdo de
relatorios ¢ estatisticas, etc.), o que contribuiria muito para a redugéio do ‘lead-time’
para o ‘design’ desses sistemas de controle.

Portanto, séo subprodutos deste trabalho:
¢ A disponibilizagdo de uma biblioteca em Visual C++ de elementos utilizados no
E-MFG que facilite o desenvolvimento de outras ferramentas;

* A disponibilizag3io de um modelo de desenvolvimento de aplicagdes e ferramentas
baseadas na biblioteca de elementos E-MFG;

Assim, o controlador ¢ seu modelo de dados (detalhados no Capitulo 6)
constituem o ponto de partida para futuros projetos visando um ambiente de
modelagem e design de sistemas de controle para SEDs. Entre as possibilidades de
futuros trabalhos se encontram o desenvolvimento dos seguintes modulos:
¢ Interface de visualizagfo grafica para supervisdo,
¢ Interface de programagéo grafica em dois niveis (Grafo e Objetos);
¢ Interface com banco de dados para realizar o rastreamento e a geragéo das ordens
de produgio;

e Interface com outros controladores (CLP’s, Fieldbus, etc.) através de outros
métodos ou protocolos (e.g. TCP/IP, XML, MQSeries);

o Simulador E-MFG ou PFS/E-MFG baseado na estrutura de dados do controlador (e
integrado ao controlador);

e Ferramentas de Analise on-line do sistema produtivo com geragio de relatdrios e
estatisticas;

¢ Biblioteca de grafos E-MFG para a simulagZo ¢ validagéo do controle.

Uma caracteristica importante do controlador € a parametrizagio da
comunicagdo com 0 meio externo através do protocolo DDE, esta abordagem torna-se

transparente para o controlador informagdes provenientes de outros ‘safiwares’ como

-104 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

drivers de PLC’s ou programas que simulem a planta controlada. Assim, pode-se
validar o programa de controle sem a necessidade de se estar junto & planta, pois a
informag¢fio proveniente de um programa de simulagfo ou de um driver para um

‘hardware ' especifico € tratada igualmente pelo Controlador de 1/O.

- 105 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

Bibliografia

o ARAKAKI, J., Andlise de Sistemas de Manufatura Através da Metodologia
MFG/PFS e Regras De Producéo, Tese de Mestrado, EPUSP, Séo Paulo 1993

o BEHFOROOZ, A. & HUDSON, F. J., Software Engineering Fundamentals,
Oxford University Press, New York, 1996

* HASEGAWA K. et al., Proposal of Mark Flow Graph for Discrete System Control,
Trans. of SICE, Tokyo, v.20, n.2, p. 122-129, 1984 (em japonés)

o HASEGAWA K. e TAKASHI, K. Simulation of Discrete Production Systems
Based on Mark Flow Graph. System Science, Wroclaw, v.13, n.1-2, 1987(em

Japoneés)

e MIYAGL P. E., A Study on Mark Flow Graph Based Programming Method for
Robots, Tokyo Institute of Technology, Tese de Mestrado, Japan,1985

e MIYAGI P. E,, Control System Design, Programming and Implementation for
Discrete Event Production Systems by Using Mark Flow Graph, Tokyo
Institute of Technology, Tese de Doutorado, Japan, 1988

o MIYAGI, P.E ; CAMARINHA-MATOS, L. M. SANTOS FILHO, D. J.; BARATA,
J, ARAKAKI, J.; Application of Enhanced Mark Flow Graph in Real Time Control
Systems., In: IFAC 4th SYSMPOSIUM ON LOW COST AUTOMATION,
Proceedings, [FAC/AADECA, Buenos Aires, p163 - 170, 1995

o MIYAGI, P.E; KAGOHARA, M. Y.; MOTOHASHI, C. T.; TSUGAWA, M. F,;
PELLICER, J. E.; CARELLJ], R. Training System for Control of Discrete Event
Systems. In; IFAC 4th SYSMPOSIUM on LOW COST AUTOMATION,
Proceedings. [IFAC/AADECA, Buenos Aires, p157-162, 1995

e MIYAGIL P. E,, Controle Programével, Editora Edgard Biﬁcher Ltda., Sdo Paulo,
1996

- 106 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

PETERSON, J.L., Petri Net Theory and the Modeling of Systems, Prentice-Hall,
1981

REISIG, W., Petri Nets an Introduction, Springer-Verlag, New York, 1985

REISIG, W., A Primer in Petri Net Design, Springer-Verlag, Berlin Heidelberg,
1992

SANTOS FILHO, D. J. - Proposta do Mark Flow Graph Estendido para a
Modelagem e Controle de Sistemas Integrados de Manufatura, Dissertagfo de
Mestrado, EPUSP, Sio Paulo, 1993

SANTOS FILHO, D. J.; MIYAGI, P.E. Enhanced Mark Flow Graph to Control
Flexible Manufacturing Systems, Revista Brasileira de Ciéncias Mecénicas,
ABCM, Rio de Janeiro, RJ, v XVII, n2, p232-248, 1995

SANTOS FILHO, D. J.; MIYAGI, P.E Enhanced Mark Flow Graph to Control
Autonomous Guided Vehicle. In: CAPE’95 COMPUTER APPLICATIONS IN
PRODUCTION ENGINEERING. Proceedings (livro publicado pela
Chapman& Hall, Londres, 1995) IFIP The International Federation for Information
Processing, Beijing,, p856-865, 1995

-107 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

Apéndice I - Cronograma de Atividades

O projeto foi desenvolvido de acordo com o cronograma apresentado na figura
9-1. Houve uma grande aderéncia ao cronograma durante a evolugiio do projeto.
Apesar desta aderéncia ao cronograma, durante a etapa de desenvolvimento
(codificagio e testes) foi necessario um cuidado especial nos testes de construgio e
funcionalidade dos objetos implementados (devido a intensa interdependéncia dos
objetos que compdem a representagio do grafo), a fim de se evitar atrasos no

cronograma de testes de validagéo geral.

Controlador E-MFG - Cronograma

Daniel M. 8. Ferreira e Marco A. A, Silva - Orientador: Prof. Dr. Diolino Santos Filho

jan | fev |mar| abr |mai| jun | jul [ago| set | out |nov|dez

eSS

>
<

| e
T

OO0 [~ (O [l [(WD | e

e - —

1 - Especificagio do Controlador 6 -Especificaglo do Procedimento de Testes § - Relatério de Andamento

2 - Anglise de Alternativas (plataformas e estrutura) 7 - Implementagfio (codificagfo) - Relatério Completo

3 - Modelagem da Solugfio 8 - Testes de Validagio - Apresentacfio & Banca

4 - Especificagfio das Rotinas Principais 9 - Documentagiio ¥ - Entrega da versfio final 4
5 - Definigdo da linguagem de programacéio E-MFG Biblioteca

figura I-1 - Controlador E-MFG - Cronograma

-108 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produciio

Apéndice II - Seqiiéncia de Testes

Neste apéndice procura-se mostrar alguns exemplos de grafos e procedimentos
que foram utilizados para testar o controlador. Os testes nfio se restringiram a estes

apresentados nesta segfio, sendo estes testes apenas ilustrativos.

a. Segqiiéncia 1 - Testes de Construgiio do Grafo e Dinamica de Disparo

A fim de se realizar os testes progressivos de construgéo e dindmica de disparo
utilizou-se de um conjunto de dois sub-grafos para simular a integragio entre dois

processos industriais {figura I-al).

Sequéncia de Testes Nimero 1

tl @ 4 H

—>|—> » D\ @
carrega processa descarrega = _>1

S |- Final
pronta
Sequéncia de Disparo das Transi¢Bes
-] “ 7 ti, t5-
t2, 16 -17 - t5 - 13, t6 - 14, 17 - t1, t5, {8 -
> —>|—> > 12,16 - 17 -15 - £3, 16 - t4, {7 - 11, 15, 18 -
ol o 12,16 - ...
= Observagdes:
todos os arcos orientados possuem filtro do tipo
_ . passa todos portanio os atributos das marcas nos
MARK= {STRING(PN) ’INTEGER(SN)} ciclos fechados devem ser mantidos

© = {$2228; 222222}
©={$111%; 111111}

figura Il-al - Grafo da Seqiiéncia de Testes 1

-109 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

EMFG Seript version : 3.0; <TRANSITIONS> FROM_TRANSITION(z13,t7,b3);

Program Title: Sequéncia de Testes 1; | COMMON(t1); FROM_BOX(a14,b3,t5);

Description: Testes de Dindmicade | COMMON(12); FROM_BOX(al15b1,16);

Disparo; COMMON(13); FROM_BOX(al6,b2,17),
COMMON(14); </ARCS>

<INCLUDE> COMMON(15); <GATES>

</INCLUDE> COMMON(16); INTERNAL PERMIT(g],b1,t2);
COMMON{ED, INTERNAL_PERMIT(g2,b1,13);

<EMFG> COMMON(18); INTERNAL NOT PERMIT(g3,final,t4);
</TRANSITIONS> </GATES>

<MARIK> <ARCS> <INITIAL>

STRING{pn); FROM_TRANSITION(21,t] carrege); ADD MARK(pronta),

INTEGER(sn); FROM_TRANSITION(a2,t2,processa); {

</MARK> FROM_TRANSITION(g3,t3,descarrege); | TO_STR(pn,$222%);
FROM_BOZX(pd.carrega,t2); TO_NUM(sn,222222);

<BOXES> FROM_BOX(a5,processa,t3), }

COMMON(carrega); FROM_BOX(a6,descarrega,t4); ADD _MARK(b3);

COMMON(Processa); FROM_TRANSITION(a7,t4,final); {

COMMON(Descarrega); FROM_TRANSITION(aS,t4,pronta), TO_STR(pn$1118),

COMMON(Final); FROM_BOX(a9,final t8), TO_NUM(sn, 111111},

COMMON(ProNTa); FROM_BOX(al0,pronta,t1); }

COMMON(bLY, FROM_TRANSITION(all.t5,b1); </INITIAL>

COMMONDD); FROM_TRANSITION(a12,16,b2),

COMMON(b3); <EMFG>

</BOXES>

O arquivo “SEQUENCIA DE TESTES 1.DMP” é o histérico de disparo de
transi¢des para o grafo da figura I-al. A estrutura do arquivo ¢ a seguinte;

CT [dia/més/ano} [hora : minuto : segundo] Fired: LABEL

Onde CT ¢ o Cycle Tag que é um valor que alterna entre “<>” ¢ “><" a cada
ciclo de disparo de transigdes e LABEL ¢ o nome da Transigfo conforme definido no

arquivo F-MF'G Script.

SEQUENCIA DE TESTES 1.DMP

<> [01/12/98][22:45:36] Fired: T1
<> [01/12/98][22:45:36] Fired: T5
>< [01/12/98][22:45:36] Fired: T2
>< [01/12/98][22:45:36] Fired: T6
<> [01/12/98][22:45:36] Fired: T7
>< [01/12/98][22:45:36] Fired: TS
<> [01/12/98][22:45:37] Fired: T3
<> [01/12/98}[22:45:37] Fired: T6
>< [01/12/98][22:45:37] Fired: T4
>< {01/12/98]{22:45:37] Fired: T7
<>[01/12/98][22:45:37] Fired: T1
<> [01/12/98][22:45:37] Fired: TS
<> [01/12/98][22:45:37] Fired: T8
><[01/12/98][22:45:37] Fired: T2
>< [01/12/98][22:45:37] Fired: T6
<> [01/12/98]{22:45:38] Fired: T7
>< [01/12/98][22:45:38] Fired: T5
<>[01/12/98][22:45:38] Fired: T3
<> [01/12/98][22:45:38] Fired: T6

><[01/12/98][22:45:38] Fired: T4
>< [01/12/98][22:45:38] Fired: T7
<> [01/12/98][22:45:39] Fired: T1
<> [01/12/98}[22:45:39] Fired: TS
<> [01/12/98][22:45:39] Fired: T$
>< [01/12/98][22:45:39] Fired: T2
>< [01/12/98][22:45:39] Fired: T6
<> [01/12/98][22:45:39] Fired: T7
><[01/12/981[22:45:39] Fired: T5
<> [01/12/98][22:45:39] Fired: T3
<> [01/12/98][22:45:39] Fired: T6
><[01/12/98]{22:45:40] Fired: T4
>< [01/12/98][22:45:40] Fired: T7
<> {01/12/98][22:45:40] Fired: T1
<>[01/12/98][22:45:40] Fired: T5
<> [01/12/98][22:45:40] Fired: T8
>< [01/12/98][22:45:40] Fired: T2
>< [01/12/98][22:45:40] Fired: T6
<> [01/12/98][22:45:40] Fired: T7

- 110 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Como se pode perceber comparando o arquivo com a saida esperada verifica-
se o correto funcionamento do programa para este caso.

b. Seqiiéncia 2 - Testes de Construciio do Grafo e Dindmica de Disparo

Dando continuidade aos testes progressivos de construgiio e dindmica de

disparo utilizou-se um grafo simples para testar a manutencdo de atributos de marcas

individuais e a regra de composigéo de atributos das marcas (figura I-b1).

bt

b2

b3

o ————— P

al

2

~Miquina,~EAN]
__b‘

a3

O(0]|]|0||O

Pedido Miquina
_—-’-

a4

marca = {Peca,Pedido,Mdquina,Cliente, EAN,Qualidade}

O
o

(&)

© ={-.1001,022 Estamparia .- -

i

={- .~ - ,ClienteX ,7891234567890 .-}

Sequéncia de Testes Numero 2

bs

S OK_Level5}

2T 3 2 2 »

={000001 .- ,012 - .1234567890123 0K}

Sequéncia de Disparo das Transigbes

tl

Observagdes:

apos o diosparo de t1 a marca no box 5

deve ter os seguinics atributos:

{000001 ,1001 ,022 ClienteX ,7891234567890 ,0K}

Pasgsa Todog = me—--

Nito Pagsa Todog = ——3m-

Atrib

nouu-*—

Niio Passa Atrib= — T

i OBS: nfio ha marca composta portanto a

Passa Atrib =

..

figura II-b1 - Grafo da Seqiiéncia de Testes 2

TimeStamp: [d/m/yl[H:M:5]
TimeStamp: 115/12/98)[23:26:18)
* EMFG Script Language Version 3.0 %/
f* EMFG Interpreter Version 1.0 */
f* EMFG Linker Version 1.0 %/
* EMFG MarkManager Version 1.0 */

/* EMFG Communicator Version 1.0 */

<< E-MFG Boxes Connections Dump >>

<<END: E-MFG Boxes Connections Dump >>
<< BE-MFG Boxes Properties Dump >>

Dumping Format:/nName , Type , # Marks: Aribl = XXX &
Arib2 = XXX & ... & AwibN = XX

Bl , COMMON_BOX , #Marks=0
B2 , COMMON_BOX , #Marks=0

B3 , COMMON_BOX , #Marks=0

B4 , COMMON_BOX , #Marks=0

B5 , COMMON_BOX , #Marks=1: CLI = CLIENTEX & E =

Dumping Format:

{Origin Transition Label]->(BoxLabel)->[Destiny Transition
Label]

if a box has a mark it's label will be marked as follows:
[Crigin Transition Label]->(** BoxLabel **)->[Destiny
Transition Label]

[1=>BL>T]
[1=B2)->[Ti]
[1>@B3)->[Ti]
[1=>®H->[T1]
[T1]=(**B5*%)->[]

1234567890123 & MAQ =012 & PED=0 & PECA =
000001 & QDE =0K

<<END: E-MFG Boxes Properties Dump >>
<< E-MFG Gates Values Dump >>

Dumping Format:

(GateLabel)=Value

(GateLabel)='String'

<<END: E-MFG Gates Values Dump >>

-111 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produciio

EMFG Script version : 3.0;
Program Title: Sequéncia de Testes 2;
Description: Filiragem Seletiva;

<ARCS=>

FROM_BOX(al,bItl),
ADD_FILTER(al NOT_PASS_COMPO
SITE.PASS_ALL);

<GATES>
</GATES>
<INITEAL>

ADD MARK(b1);

<INCLUDE> { {
</INCLUDE> } TO_STR(cli, clientex);
<EMFG> FROM_BOX(a2,b2,t1), TO_STR(E.7891234567890);
<MARK> ADD FILTER{a2 NOT PASS COMPO }
STRING(pesa); SITE,NOT PASS ALL), ADD_MARK(b2),
INTEGER (ped); { {
STRING{m&q), H TO_STR{qde, OK_LEVELSY,
STRING{cli); FROM_BOX(a3,b3,t1); }
STRING(E), ADD FILTER(a3,NOT PASS COMPO | ADD MARK(b3);
STRING(gde); SITENOT PASS); {
<MARK> { TO_STR(pega,000001);
<BOXES> E; TO_STR(maq,012);
COMMON(b1), maq; TO_STR(E,1234567890123),
COMMON(b2), } TO_STR(qde,OK),
COMMON(b3), FROM_BOX(ad,bdt1); }
COMMON(b4), ADD _FILTER(24,NOT PASS COMPO | ADD MARK(b4),
COMMON(b5Y; SITE,PASS); {
</BOXES> { TO_NUM({ped, 1001);
<TRANSITIONS> ped; TO_STR(m4q,022);
COMMON(]),; maq, TO_STR(cli,estamparia);
</TRANSITIONS> } h
FROM_TRANSITION(25,t1,b5); </INITIAL>
% omitindo o fiitro do arco a5 </[EMFG>
</ARCS>

-112 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

¢. Seqiiéncia 3 - Testes de Construciio do Grafo, Dindmica de Disparo e
integracio com outros aplicativos

A fim de aumentar a complexidade dos testes progressivos de construcdo e

dindmica de disparo utilizou-se um grafo representando a dinimica de um processo

industrial (figura I-c1) ligado a um sistema de controle representado pelo grafo da

figura I-c2. Este teste foi realizado utilizando-se duas instncias do controlador

conectadas através de DDE.

e A

figura Il-cl - Grafo da Seqiiéncia de Testes 3 - Grafo do Processo

EMFG Seript version : 3.0,
Program Title: SeqTest3-Plant;

Deseription: Planta da
Sequéncia de Testes 3;
<INCLUDE>
</INCLUDE>

<EMFG>

<MARK>
<MARK>

<BOXES>
CAPACITY(Magln,5,Fifo),
COMMON(Cer);
COMMON(Prep);
COMMONProc);
COMMON(Acab);
COMMON(Desc),
COMMON(MDISP),
COMMON(RDISPY,
CAPACITY(MegOut,5,Fifo);
</BOXES>

<TRANSITIONS>
COMMON(t1);
COMMON(t2);
COMMON(t3);
COMMON(t4);
COMMON(5);
COMMON(t6),
COMMON(L7),
COMMON(8);
</TRANSITIONS>
<ARCS>

FROM_TRANSITION(al,t1,Magin);

FROM_BOX(a2,Magin,t2);
FROM_TRANSITION(a3,12,Car);
FROM_BOX(a4,Car,{3);
FROM_TRANSITION(a5,t3,Prep).
FROM_TRANSITION(a6,t3, RDisp),
FROM_BOX(a7 Prep,i4),
FROM_BOX(a8.RDisp,t2);
FROM_TRANSITION(a9,t4,Proc);
FROM_BOX(al0,Proc,t5);
FROM_TRANSITION(al1,t5,Acab);
FROM_BOX(al2,Acab,i6),
FROM_BOX(a13,RDisp,t6),
FROM_TRANSITION(al4,t6,Desc),
FROM_BOX(u15,Dese,t7);

FROM_TRANSITION(a 16,47 MagOut),
FROM_TRANSITION(a 17,17 MDisp);
FROM_TRANSITION(218,t7,RDisp);
FROM_BOX(al19,MDisp,t2);
FROM_BOX(a20,MagOut t8);

</ARCS>

<GATES>

EXTERNAL INPUT_PERMIT{gatel,t1,DDE,SeqT
est3-Timers!datalgate] ACTIVE);
EXTERNAL_CUTPUT FULL_PERMIT(gate2,Ma
gIn,DDE,SeqTest3-Timersidatalgate2 ACTIVE);
INTERNAL_FULL_NOT_PERMIT(gate3,MagOut.t
6),
EXTERNAIL,_INPUT_PERMIT(gated,i8,DDE,SeqT
est3-Timers'datalgate? ACTIVE),
ADD_CONDITION(gate] ((TRUE)&&(TRUE)));
</GATES>

<INITIAL>

ADD MARK(Mdisp);

{

}
ADD MARK(Rdisp);
{

H
</INITIAL>
</EMFG>

- 113 -

Centrolador E-MFG para Sistemas Integrados e Flexiveis de Produgie

o= -

Inicio

all =3

alo

Fim Retorna
t4

t6
al4

" e s o s o oo

Processo

figura Il-c2 - Grafo da Seq

ey

iiéncia de Testes 3 - Grafo do Controle

EMFG Script version ; 3.0;

Program Title: SeqTest3-Timers;

Description: Timers da Sequéncia

de Testes 4;

<INCLUDE>
</INCLUDE=>

<EMFG>

<MARK>
<MARK>

<BOXES>
COMMON(Inicio);
TEMPORIZED(Timer1,2);
TEMPORIZED(Timer2,3),
COMMON(Fim);
COMMON(Retorna);
COMMON(Work);
COMMON(Prox);
</BOXES>

<TRANSITIONS>
COMMON(t1);
COMMON(12);
COMMON(3),
COMMON(4),
TEMPORIZED(S, 1);
TEMPORIZED(6,3);
</TRANSITIONS>

<ARCS>
FROM_TRANSITION(al,t1,Inicio);
FROM_BOX(g2, Inicio,t2},
FROM_TRANSITION(a3,12,Timer1);
FROM_BOX(ad,Timer},t3);

FROM_ TRANSITION(a5,t3, Timer2),
FROM_BOX(a6, Timer2,t4);
FROM_TRANSITION{a7,t4,Fim);
FROM_BOX (a8 Fim.t5);
FROM_TRANSITION(a9,t5,Retorna);
FROM_BOX(a10,Retoma, 16},
FRCM_TRANSITION(al1,t6,Prox);
FROM_BOX({al2 Prox,t1);
FROM_TRANSITION(a13,t1,Work),
FROM_BOX(al4,Work,t5);
<fARCS>

<GATES>
EXTERNAL_OUTPUT PERMIT (gate] Work,
DDE,PASSIVE);
EXTERNAL_OUTPUT_PERMIT(gated, Work,
DDE,PASSIVE);

EXTERNAL_INPUT PERMIT(gate2.t1,DDE,
JPASSIVE),

</GATES>

<INITIAL>
ADD MARK(Prox);
{

}
</INITIAL>

</EMFG>

-114-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

d. Seqiiéncia 4 - Testes de Integraciio com outros aplicativos

Utilizando o grafo da figura II-c1, descrito através do programa a seguir foram
monitorados a evolugdo dindmica do sistema através de arcos de sinal de saida que se
conectavam via DDE a um segundo aplicativo.

O arquivo de entrada e a evolugdo dindmica do grafo se encontram a seguir.

/ = \
H

@+ CHHHO
\ | o] ' J)

@ |
| S |

figura II-d1 - Estado 1

figura I1-d3 - Estado 3

~115-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

EMFG Script version ; 3.0;

Program Title: TESTEL;

Description: programa do trabalho de formatura;
<INCLUDE=>

<MNCLUDE>

<EMFG>

<MARK>

STRING({PARTY,

</MARK>

<BOXES>

CAPACITY(MAGIN, 10,FIFO);
TEMPORIZED{CARREGA, 2);
TEMPORIZEIXPREPARADA LY,
COMMON(MDISP);

COMMON(RDISPY,
TEMPORIZED(PROC_A.5);
TEMPORIZEIXPROC_B.5);
TEMPORIZETINACABADA, 1);
TEMPORIZEIXDESCARREGA, 1)
CAPACITY(MAGOUT, 10,LIFO),
</BOXES>

<TRANSITIONS>

COMMON(T1);

COMMON(T2);

COMMON(T3);

COMMON(T4);

COMMON(TS);

COMMON(T6):

COMMON(TT);

COMMON(TS);

</TRANSITIONS>

<ARCS>

FROM_BOX(al, MAGIN,T1);
FROM_TRANSITION(a2,T1,CARREGA);
FROM BOX(e3,CARREGA,T2);
FROM_TRANSITION(a4,T2,PREPARADAY);
FROM_BOX(25,PREPARADA,T3);
FROM_TRANSITION(a6,T3,PROC_A),
FROM_BOX(a7,PREPARADA, T4);
FROM_TRANSITION(28,T4,PROC B);
FROM_BOX(a9,PROC_AT5),
FROM_TRANSITION{(al0,T5,ACABADAY;
FROM_BOX(al1,PROC_B,T6);
FROM_TRANSITION(a12,T6 ACABADA),
FROM_BOX(a]13,ACABADAT7);
FROM_TRANSITION(ai4,T7, DESCARREGAY),
FROM_BOX(a15,DESCARREGA.T8),
FROM_TRANSITION(a!6,T8, MAGOUT);
%robd ¢ méquina
FROM_TRANSITION(al7,T2,RDISP);
ADD_FILTER(al7.NOT PASS_COMPOSITE,NOT_PASS ALL);
{

}

FROM_BOX(al 8,RDISP,T7);
FROM_TRANSITION(al9,T8,RDISPY;

ADD FILTER(a19,NOT PASS_COMPOSITENOT PASS_ALL),
{

}

FROM_ BOX(a20,RDISP,TL);
FROM_TRANSITION{a21,T8 MDISP};

ADD_FILTER(a21,NOT PASS COMPOSITE,NOT PASS ALL);
{

}
FROM_BOX(s22,MDISP, T1);
</ARCS>

<GATES>
INTERNAL_PERMIT(GATE!, PREPARADA, T3);
ADD_CONDITION(GATEL (PREPARADAIPART=~'A%);
INTERNAL_PERMIT(GATEZ,PREPARADA,T4);
ADD_CONDITION(GATEZ,(PREPARADAIPART=-"B7);

%Gates de interface

EXTERNAL_CUTPUT DATA(MAGIN A2 MAGIN,PART,DDE,DE
MO!DUMMY!MAGTRN ACTIVE),

EXTERNAL_OUTPUT DATA{CARREGA_A3,CARREGA,PART,DD
E,DEMOIDUMMY'CARR ACTIVE),
EXTERNAL_OUTPUT_DATA(PREPARADA,_ Ad,PREPARADA,PAR
T.DDE.DEMO!DUMMYIPREP,ACTIVE),

EXTERNAL_OUTPUT DATA(PROCA_AS PROC_A PART,DDE,DE
MO!DUMMY!PROCA, ACTIVE},
EXTERNAL_OUTPUT_DATA({PROCB_A6,PROC_B.PART.DDE,DE
MOIDUMMYIPROCB,ACTIVE);

EXTERNAL_OUTPUT DATA(ACABADA_AT,ACABADA,PART,D
DE.DEMO!DUMMY'!ACAB,ACTIVE)
EXTERNAL_OUTPUT_DATA(DESCARREGA, AS,DESCARREGA,P
ART,DDE,DEMO!DUMMY!DESC.ACTIVEY,
EXTERNAL_OUTPUT_DATA(MAGOUT_A9,MAGOUT,PART,DDE
DEMOIDUMMY!MAGOUT,ACTIVE),
EXTERNAL_OUTPUT_PERMIT(RDISP_A10,RDISP,DDE,DEMOID
UMMY!GATE2,ACTIVE);
EXTERNAL OUTPUT PERMIT(MDISP_Ai{,MDISP,DDE,DEMO!
DUMMY!GATEL ACTIVE),

</GATES=>

<INTTIAL>
ADD_MARK(MAGIN)
'{I'O STR(PART,B),
i&DD_MARK(MAGIN)
'{ro_STR(PART,B);
ADD_MARK(MAGIN)
'E‘O_STR(PART,B);
LDD_MARK(MAGIN)
'{[‘O STR(PART.B),
:}ADD_MARK(MAGIN)
'{I"O_STR(PART.A);
.}ADD_MARK(MAGIN)
%O_STR(PART,B);

}
ADD_MARK(RDISF)
{

3
ADD MARK(MDISP)
{

}
</INITIAL>

</EMFG>

-116 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produ¢io

Apéndice I1I - Manual do Aplicative

O aplicativo controlador ¢ bastante simples sob o ponto de vista do usuério,
existindo poucos comandos que podem ser utilizados. A interface do controlador

pode ser visualizada na figura I11-1.

Untitled - Etna EMFG Controller = {0 x|
Arquivo AcBes Literal Dump OpgBes Help

Detinir Compilar Acionear Qpcdes
Script & Monter Controle DOE

Halp I

Informactes do Grafo T abelas

toeiver: [ITEETERE Dump - | el

Nome: [TESTET Literal; [Arquivo ER

EMFG SCRIPT VERSION : 3.0 —
PROGRAM TITLE: TESTE1

DESCRIPTION: PROGRAMA DO TRABALHD DE FORMATURA
</MCLUDE»

</ANCLUDE>

<EMFG>

<MARK:

STRING[PART)

</MARK>

<BOXES»

CAPACITY(MAGIN,10FIFD)

TEMPORIZEDICARRF A 21 it

Figura II-1 — Interface do Controlador

A seguir, séo apresentados os processos de uso do controlador:
Carregando um programa de controle:

Escolha o botéo Definir Script e escolha o arquivo de dados a ser carregado.
Este arquivo deve estar escrito de acordo com o E-MFG Script descrito no capitulo 5.

Selecione entdo o botdo Compilar & Montar ¢ o grafo serd compilado e
estara pronto para rodar. Se existirem gates ativos de dados externos os seus valores
iniciais serdo carregados neste momento.
Executando um programa de Controle:

Escolha o botdo Acionar Controle, a caixa de didlogo da figura III-2 sera
exibida. Nesta caixa de didlogo serfio apresentados os tempos do ciclo de disparo de
transi¢do e do ciclo de comunicagéio, bem como 3 botdes com as fungdes de executar
um passo simples de controle (Passo Simples), executar o programa em modo
continuo {Continuo) e sair (Sair).

- 117 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

Ciclo de Controle %) |

Ciclo de Comunicacdo
Momento Atual :
Detta Geral :
- Ciechy de Comunicagdo | Disparo de TransigBes
@ Ultima Deha : ffB Uktima Dedta -
Passo Simples Contirun

Figura IJ-2 — Caixa de Didlogo de Controle

Ao sair da caixa de didlogo de ciclo de controle o usuario pode selecionar uma
das fungdes de Dump do menu dump e visualizar as propriedades do grafo (marcagio
¢ conexdes, valores dos gates e propriedades dos boxes).

Testando e configurando a comunica¢io via DDE:

O botiio Opedes DDE permite que sejam configurados os pardmetros de
comunicag¢do e que sejam realizados testes com outros aplicativos.

Dialog de opgdes da Comunicagio DDE

Teste Local

Aplcagdo: | & XTYP_REQUEST
Tépico: l ™ KTYP_POKE
hem |
Amgumentn I

Parémetros Globais

Tige Duk ms) . 200

' Rngistrar eros no arguive ds LOG
 Avisar usudtio de snos ng DDE

o] _cwes |

Figura II1-3 — Caixa de Didlogo de Op¢des DDE

Testar '

-118 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgciio

Histérico de Transacdes
O programa gera 3 arquivos de log, NOME.DMP (registro do disparo de

transi¢des), NOME.GPH (dump do estado do grafo) e NOME.DDE (registro dos erros
de comunicagéo). Onde NOME ¢ o nome do grafo.

-119-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producéio

Apéndice IV - Cédigo Fonte do Controlador

Definicdes Globais

Files Elements.h and Definitions.h - Global

/include file for E-MFG Elements
/Definition Date: July 4th, 1998
//Last changed: July 4th, 1998
/Defined by : Marco A. A. Silva
//Last changed by: Marco A. A, Silva

#include "definitions.h” HE-MFG Constant Definitions

#include "wordsarray h" /fExtension of String Arrays

#include "basis.h" H#E-MFG Basis Class

#include "graph.h" H#E-MEF'G Graph Components
#inelude "marks.h" HE-MEG Marks Definition
#inchude "arcfilt.h" HE-MFG Are Filter Definition

#include "arcs.h" HE-MI'G Arcs Definition
Hinclude "boxes.h" HE-MFG Boxes Definition
#include "transit.h" HE-MFG Transition Definition

#include "gates.h" HE-MFG Gates Definition
#include "listh" HLinked List Definition
#include "arrays.h" HAmays Extension Class

/i definitions.h - Definitions of eMFG constants:
{/ version:1.0

{/ Definition Date: 28/01/98

/ Last Modified: 06/07/98

/f programed by: Marco A. A. Silva

// Cbjetivos: colocar todos as constantes num s6é arquivo para ser
/f incluido toda a vez que for necessério (basis.h, interp.h)
/f para deixar as defini¢Bes mais limpas

{/ Tipo Indefinido (Uso muitiplo)
#define NULO -1

/ Versfio Atual do SCRIPT
#define SCRIPT_VERSION "3.0

Ntimero maximo de elementos de cada tipo no grafo
fidefine NMAX 255

/ Tipos de Dados

#define BOOLEAN 3
#define TEXT _ATRIB 2
#define INTEGER_ATRIB 1
#define STILL, UNDEFINED 0

/ Tipos de Nodes de Array
fidefine STRING_NODE
#define MARKAT NODE
#define ATTRIB_NCDE
#define ARC_NODE
#define BOX_NODE
#define TRANSIT NODE
#define GATE_NODE
#define MARKS_NODE
#define CONDS_NODE
#define ATTRI_NODE
#define ATTRIARRAY_NODE
#define INT_NODE

el I R N

#/ Possible Atribuitions and/or Conditions (Types):
#idefine UNDEFINED _TYPE 0
#define EQUAL_TO_NUM CTE 1
#define EQUAL_TO_STRING_CTE 2
#define EQUAL_TO GATE 3

-120-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

#define EQUAL_TO_MARKATRIB 4
#define NOT_EQUAL TO NUM CTE 5
#define NOT_EQUAL_TO_STRING_CTE 6
#define NOT_EQUAL_TO_GATE 7
#define NOT_EQUAL_TO_MARKATRIB 8
#idefine GREATER_THAN_ NUM_CTE 9
#define GREATER_THAN STRING CTE 10
#define GREATER_THAN_GATE 11
#define GREATER_THAN_MARKATRIB 12
#define LOWER_THAN NUM CTE 13
#define LOWER_THAN_STRING_CTE 14

#define LOWER_THAN_GATE 15
#define LOWER_THAN MARKATRIB 16

#define EQUAL_OR_GREATER_THAN_NUM_CTE 17
#idefine EQUAL_OR_GREATER_THAN_STRING CTE 18
#define EQUAL_OR_GREATER_THAN_GATE 19
#define EQUAL_OR_GREATER_THAN_MARKATRIB 20
#define EQUAL_OR_LOWER_THAN NUM_CTE 21
#define EQUAL_OR_LOWER_THAN STRING CTE 2
#define EQUAL_OR_LOWER_THAN_GATE 23
#define EQUAL_OR_LOWER THAN MARKATRIB 24

Possible Left Elements of Conditional Expressions:
#define COMPARE MARK 1
#Hdefine COMPARE_GATE 0

// tipos de boxes

#define COMMON_BOX

#idefine TEMP_BOX

#define PACKING_BOX

#define UNPACKING_BOX
#define TRANSFORMATOR_BOX
#define CAPACITY BOX

LF NP N R e

fMipos de transigdo
#define COMMON_TRANSITION
#define TEMPORIZED TRANSITION

—_—

{ftipos de gates

#define INT_PERMIT

#define INT_NOT_PERMIT

#define INT FULL_PERMIT

#define INT_FULL _NOT PERMIT

#define EXTERNAL _INPUT_PERMIT

#define EXTERNAL INPUT NOT_PERMIT

#define EXTERNAL_OUTPUT_PERMIT

#idefine EXTERNAL_OUTPUT_NOT_PERMIT
#define EXTERNAL OUTPUT _FULL_PERMIT
#define EXTERNAL_OUTPUT_FULL_NOT_PERMIT
#idefine INT DATA 10
#define INT_N 11
#define EXTERNAL_OUTPUT_DATA 12
#define EXTERNAL _OUTPUT N 13
#idefine EXTERNAL _INPUT DATA 14

W0] O A W= D

// Tipos de Ativagéio
#define ACTIVE 0
#define PASSIVE 1

/f Tipos de Métodos de Comunicagio
#define INTERNAL 0
#define DDE 1

// Return Data
#define NUMERICAL_DATA 0
#define STRING_DATA

#define BOOLEAN DATA

b —

/ Tipos de Arco
#define NOT_FILTER 0
#define FILTER

—

-121-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

#/ Tipos de Origem do Arco:
#define UNKNOWN

#define FROM_TRANSITION
#define FROM_BOX

[S e

/ Tipos Especiais de Condicionais

{/ Operadores Logicos
#define AND

Hdefine OR

fidefine ALWAYS _TRUE
Hdefine ALWAYS FALSE

LR =1

Operadores de comparaghio
#define EQUAL

#define GREATER

#define LESSER

#define DIFFERENT

W= O

/' Tipos de R-VALUE
#define INT_CTE

#define STR_CTE

#define INT_BOX_ATB
#define STR_BOX_ATB
#define INT_GATE_VAL
#define STR. GATE_ VAL

(= S P]

{{ Defines do Interpretador
#define MAX_LINE_SIZE 255;

Tipos de Filtro

#define PASS ALL

#define NOT_PASS_ALL

#define PASS

#define NOT_PASS

#idefine PASS_COMPOSITE
#define NOT_PASS_COMPOSITE

W Wb~ O

/! Tipos de Enderego
#define SINGLE ¢
#define DOUBLE 1

/Tipos de Aglo

#define NONE 0
Hdefine STEP 1
Hidefine CONT 2
#define LEAVE 3

A - Elementos Estruturais Basicos

Files Basis.h and Basis.cpp - E-MFG base build elements
/# basis h - Definition of EMFG base build elements:

version:2.0

Definition Date: 11/12/97

// Last Modified: 08/11/98

/i Programed by: Daniel M. S. Ferreira

{/ Last Modified by: Daniel M. S. Ferretra

{/ Objetivos: Definir as estruturas de dados auxiliares
/{ para a implementagio do grafo (condigdes e atribuigdes e atributos)
i

class CMarkAttribute:public CObject
{
private:

// Atribute Label

CString* mp_Label;

1 Atribute Type

-122-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

short m_Type;

/f Atribute Data for Text Atributes
CString* mp_TextAtribute;

/ Atribute Data for Integer Afributes
long m_IntegerAtnbute;

public;
// Construction & Destruction:
CMarkAttribute();
~CMarkAttribute();

CMarkAttribute(CString MyLabel, short MyType),

/{ Build Functions:
void Create(CString MyLabel, short MyType),

void ResetAtrib(); // Resets attribute
void SetToNull(); # Set Attribute to Null values

// Data Management:

void SetAtrib(CString MyTextAtrib), /Sets the attribute value
void SetAtrib(long MylntegerAtrib); //Sets the attribute value
CSuring GetTextAtrib(); /Returns the mp_TextAtribute Member
long GetIntegerAtrib(); //Retums the m_Integer Atribute Member
short GetType(y;, // Returns the attribute type

CString GetLabel(); /Returns the attribute label
CString GetAsTexi(),/Retums the attribute value as a siring
CString GetDump(); // Returns the attribute in dump format

Hsertalizaciio
DECLARE_SERIAL (CMarkAdttribute);
virtual void Serialize(CArchive& ar),

#f Construtor de Copia e operador igual:
CMarkAttribute(const CMarkAttributeds AtribScr),
const CMark Attribute& operator =(const CMarkAttribute& AtribSte);

/ operador de igusldade
BOOL operator =(CMarkAttribute& AtribSre);

H

L i
ffC Attribution Object Definition
W
¢class CAtribution:public CObject
{
protected:
Tipo de Atribuigéio
short m_Type;
i tndice do Box que contem a marca
long m_ThisMarkBoxIndex;
/1 Atributo da Marca
long m_MargkAtrib;
/f Constantes de ignaldade:
long m_EqualNumConstant;
CString m_EqualStringConstant;
/f Varifveis de igualdade:
long m_EqualGatelndex;
long m_EqualiMarkBoxIndex;
long m_EqualMarkBoxAtrib,

public:
/f Construction & Destruction
CAttribution();
~CAtiribution();
CAdttribution(short MyType,long MyMarkBox,long MyMarkAwrib,long MyEqualConstantOr(fateIndex);
CAttribution(short MyType,long MyMarkBox long MyMark Atrib,C String MyEqualConstant),
CAttribution(short MyType,long MyMarkBox,long MyMarkAtrib,long MyEquaiBoxIndex, long MyEqualAtribute);

-123 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

// Build Functions:
void Create(short MyType,long MyMarkBox,long MyMark Atrib,long MyEqualConstant);
void Create(short MyType,long MyMarkBox,long MyMarkAtrib,CString MyEqualConstant),

void Create(short MyType,long MyMarkBox long MyMarkAtrib,long MyEqualBoxIndex, iong MyEqualAtribute);

/f Data Management:

BOOL DoAttribution(elass CBoxArray* p_MyBoxArray class CGateArray® p_MyGateArmay), // Executa a atribuiggio

Hserializag#io
DECLARE_SERIAL (CAtiribution),
virtual void Serialize(CArchive& ar);

Copy Constructor and Equal Operator
CAttribution(const C Atiribution& AtribSrc);
const CAttribution& operator = const CAttribution& AtribSre);

e T T
#CConditional Object Definition

//eMFG Conditional Object

fiversion 2.0

/Mefinition date:06/07/98

/fLast Modified:22/10/98

//Programmed by: Marco A. A. Silva

/Last changed by: Marco A. A Silva

class CConditional : public CObject
{

feonstructor & destructor
public:
CConditional(),
~CConditional();
ffunctions
public:
void Create short myLogic,
class CGraph* myGraph=NULL,
BOOL myNegative=FALSE,
short myLBox=NULO, short
myLAtmb=NULO,
short myOperator=NULO,
short myR Type=NULG,

short myRParem1=NULO, shott
myRParam2=NULO, CString myRParam3=""},

void AddRight (CConditional& myRBrother);
void AddDown (CConditional& myDDaughier);

void SetAlwaysTRUE();
void SetAlwaysFALSE();

BOOQL Evaluate();
/ Copy Constructor and Equal Operator

CConditional(const CConditional& CondSrc):
const CConditional& operator =(const CConditional& CondSre);

/fdata members

private:
class CGraph* mp_Owner; // Owner Graph
short m_Logie; /MNode Logiceal Operator
BOQL m_NOT; fMNode Not Operator
short m_LBox; HL-Value Box
short m_LAttrib; /L-Value Attribute
short m_Operator, fHoperator type
short m_RType, /R-Value type
short m_RIntCte; //R-Value Integer Constant
CString m RStrCte; /R-Value String Constant

-124 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

short m RBox; //R-Value Box
short m_RAtrib; /R-Value Atiribute
short m_RGate; /R-Value Gate
/fpointer members
private:
CConditional* mp_Right; /Right brother conditional

CConditional* mp_Down; /Down daughter conditional
b

// basis.cpp - Implementation of EMFG base build elements
{f version:2.0

/f Definition Date: 11/12/97

/ Last Modified: 20/06/98

{f Programed by: Daniel M. 5. Ferreira

Last Modified by: Marco A, A. Silva

#f Objetivos: Definir as estruturas de dados auxiliares
/f para a implementagdio do grafo (condigfes ¢ atribuigdes e atributos)
"

#include "stdafx.h” /# standard windows aplication
#include "elements.h" / EMFG Elements include list

L T e

/f CMarkAtrib class:

#define CMARKATRIB_VERSION |
/f Construction & Destruction:

CMarkAttribute::CMarkAttribute()

{
mp_Label=NULL;
m_Type = STALL_UNDEFINED:,
mp_TextAtribute = NULL;
m_IntegerAtribute = 0;
t

CMarkAttribute::CMark Attribute(CString Myl.abel, short MyType)

{
ASSERT(MyLabelt=""),
ASSERT((MyType=INTEGER_ATRIB)||(MyType=TEXT_ATRIB));

mp_Label = new CString{MyLabel);

m_Type = MyType;
switch {m_Type)
{

ease INTEGER_ATRIB:

{

mp_TextAtribute = NULL;
m_IntegerAtribute = 0;
break;

}
case TEXT ATRIB:

{
mp_TextAtribute = new CSiring;

m_JntegerAtribute = 0,
break;
}

3

CMarkAttribute: . ~CMark Attribute()

{

if @np_Labell=NULL)
{
delete mp_Label;
mp_Label = NULL;
}

if (mp_TextAtribute!=NULL)
{

-125-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

delete mp_TextAtribute;
mp_TextAtribute = NULL;
H

void CMarkAttribute::Create(CString MyLabel, short MyType)

{

ResetAtrib();

ASSERT(MyLabel!="");
ASSERT((MyType=—INTEGER_ATRIB)||MyType—TEXT_ATRIB));
mp Labe! = new CString(MyLabel);

m_Type = MyType;

switch (m_Type)

{
case INTEGER_ATRIE:

{

mp_TextAtribute = NULL,
m_IntegerAtribute = 0;
break;

}
case TEXT ATRIB:

{

mp_TextAtribute = new CString;
m_IntegerAtribute = 0,

bresak;

H

void CMark Attribute::SetToNull()

t
switch (GetType(}
{
case TEXT _ATRIB:

{
if(mp_TextAtributel=NTILL)

{
delete mp_TextAtribute;
mp_TextAtribute = NULL;

}
mp TextAtibute=new CString;
break;

}

case INTEGER_ATRIB:
{
m_IntegerAtribute=0;

break;
}

}
void CMarkAttribute::ResetAtrib()
i{f (mp_Labell=NULL)

f!elete mp_Label;

mp_Label =NULL,
H

iffmp_TextAtribute!=NULL)

{
delete mp_TextAtribute;
mp_TextAtribute = NULL;

}
m_Type = STILL,_UNDEFINED,
m_IntegerAtribute = 0;

-126 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

/f Data Management:
void CMarkAttribute::SetAtrib{CString MyTextAtrib)

{
ASSERT(GetType(==TEXT_ATRIB);
if{mp_TextAtribute!=NULL)
{
delete mp_TextAtribute;
mp_TextAtribute = NULL;
}
mp_TextAtribute = new CString(MyTextAtrib);
}

void CMarkAttribute:: SetAtrib(long MyIntegerAtrib)

{
ASSERT(GetType(==INTEGER_ATRIB);
m_IntegerAtribute = MyIntegerAtrib;

}

CString CMarkAttribute::GetTextAtrib()

{
ASSERT(GeiType()==TEXT_ATRIB),
ASSERT(mp_TextAtribute!=NULLY,
return (CString)*mp_TextAtribute;

}

long CMarkAttribute:: GetIntegerAtrib()

{
ASSERT(GetType()==INTEGER_ATRIE);
return m_IntegerAtribute;

}

short CMarkAttribute::GetType()
{

return m_Type;

}

CString CMarkAttribute::GetLabel()

{

ASSERT (mp_Labeli=NULL);
retumn *mp_Label;

H

CString CMarkAttribute::GetAsText()
{

CString MyReturn;

switch (GetType()

{

case TEXT_ATRIB:
i
MyRetumn = GetTextAtrib(),
break;

}
case INTEGER _ATRIB:

{
MyReturn. Format(*%%1d",GetIntegerAtrib());
break;
H
¥
retwmn MyReturn;
}

CSiring CMarkAttrnbute::GetDump()

{

CSiring MyReturn = GetLabel(+" =" + GetAsText(),
return MyReturn;

}

//senalizacho
IMPLEMENT_SERIAL (CMarkAttribute, CObject, CMARKATRIB_VERSION),
void CMarkAttribute:: Serialize(CArchive& ar)

{
if (ar.IsStoring ()

-127 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

{

ar<<(CString)*mp_Label,

ar<<m_Type;

if {m_Type==TEXT_ATRIB)
ar<<(CString)*mp_TextAtribute;

if (m_Type==INTEGER,_ATRIB)
ar<<m_IntegerAtribute;

}

i

ResetAtrib();

mp_Label = new CString;
ar>>(CString)*mp_Label;
ar>>m_Type;

if (m_Type==TEXT_ ATRIB)

else

{
mp_TextAtribute = new CString;
ar>>(CString)*mp_TextAtribute;

}
if (m_Type==INTEGER_ATRIB)
ar>>m_IntegerAtribute;
¥
}

/f Construicr de Cépia e operador igual:
CMarkAttribute:: CMarkAttribute(const CMarkAttributed: AtribSer)
{
ASSERT(AtribScr.mp_Labell=NULL),
mp_Label = new CString(*AtribScr.mp_Label),
m_Type =AtribScer.m_Type;
if im_Type==TEXT_ATRIB)
{
mp_TextAtribute = new CString(* AtribScr.mp_TextAtribute),
m_IntegerAtribute = 0,
}
else

{
if (m_Type==INTEGER_ATRIB)

{

m_IntegerAiribute = AtribScr.m_IntegerAtribute;
mp_TextAtribute = NULL;

H

else

{

mp_TextAtribute = NULL;
m_IntegerAtribute = (),

}

H

const CMarkAttribute& CMarkAttrdbute: operator ={ const CMarkAitribute& AtribSrc)

{
ASSERT(AtribSrc.mp_Labell=NULL),
if (this==&AtribSre)

{

return *this;

}

else

{

if (mp_Label = NULL)
{
delete mp_Label;
mp_Label = NULL,

}
if (mp_TextAtribute = NULL)
{
delete mp_TextAirbute;
mp_TextAtribute = NULL,

mp_Label = new CString(*AtribSrc.mp_Label};

m_Type =AtribSrc.m_Type;
if (m_Type==TEXT_ATRIB)

-128 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

{

mp_TextAtribute = new CString(*AtribSre.mp_TextAtribute),
m_IntegerAtribute = 0,

H

else

{
if (m_Type=INTEGER_ATRIB)

{
m_IntegerAtribute = AtribSrc.m_IntegerAtribute;

mp_TextAtribute = NULL:
}

else

{

mp_TextAtribute = NULL,
m_IntegerAtribute = 0;

}

return *this;
}

BOOL CMarkAttribute: :operator =={CMarkAttribute& AtribSre }

{
BOOL Return=FALSE;
if (GetType()==AtribSre. Get Type())

{
switch (GetType())
{
case INTEGER_ATRIB:

{

if (GetInteger Atrib(==AtribSre. Getnteger Atrib(})
{
Return=TRUE,
H

{
Return =FALSE,

}

clse

break;
case TEXT_ATRIB:

{
if (GetTextAtrib(==AtribSre.GetTextAtribQ)

{
Return=TRUE,
}
else
{
Return =FALSE;
}
break;
h
8
}
else
{
Return=FALSE;
}
retum Return,
}

i
e T R T
b G T T
CAttribution class Implementation

i

/f Obs: see definitions.h for CAttribution types
CAttribution::CAttribution()

{
Tipo de Atribuigao

-129-

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produgiio

m_Type=UNDEFINED_TYPE;
/1 Indice do Box que contem a marca
m_ThisMarkBoxIndex = -1;

/ Atributo da Marca
m_MarkAtrib =0,

#/ Constantes de iguaidade:
m_EqualNumConstant=(;
m_EqualStringConstants="",

/ Varidveis de igualdade:
m_EqualGatelndex=-1;
m_EqualMarkBoxIndes=-1;
m_EqualMarkBoxAtrib=-1;

}

CAtiribution::~CAttribution()

Hvoid destructor (there is no object dynamic aflocation)
}

CAttribution::CAttribution(short MyType,long MyMarkBox,long MyMarkAtrib,long MyEqualConstantOrGateIndex)

{
ASSERT((MyType==EQUAL_TO_NUM_CTE)||(MyType==EQUAL,_TO_GATE));
ASSERT(MyMarkBox>=0),

ASSERT(MyMarkAtrib>=0);

#f Tipo de Atribuigdo
m_Type=MyType;

// indice do Box que contem a marca
m_ThisMarkBoxIndex = MyMarkBox;
Atributo da Marca

m_MarkAtrtb = MyMarkAtrib;

if (MyType=~EQUAL_TO_NUM _CTE)
{

Constantes de igualdade:
m_EqualNumConstant=MyEqualConstantOrGatelndex;
m_EqualStringConstant="",

/f Varidveis de igualdade:

m_EqualGatelndex=-1;

m_EqualMarkBoxIndex=-1;
m_EqualMarkBoxAtrib=-1;

}

{
/f Constantes de igualdade:

m_EqualNumConstant=0;
m_EqualStringConstant="";

/ Varidveis de iguaidade:
m_EqualGateIndex=MyEqualConstantOrGateIndex,
m_EqualMarkBoxindex=-1;
m_EqualMarkBoxAtrib=-1;

}

else

}
CAdribution::CAttribution(short MyType long MyMarkBox,long MyMark Atrib,CString MyEqualConstant)

{
ASSERT{(MyType==EQUAL_TO_STRING CTE);
ASSERT(MyMarkBox>=0);
ASSERT(MyMarkAtrib>=0);
ASSERT(MyEqualConstant!="");

m_Type=MyType;// Tipo de Atribuiclo
m_ThisMarkBoxIndex = MyMarkBox;// Indice do Box que contem & marca
m_MarkAtrib = MyMark Atriby// Atributo da Marca

/ Constantes de igualdade:
m_EqualNumConstant=0;
t_EqualStringConstant=MyEqualConstant,
/ Varidveis de igualdade:
m_EqualGatelndex=-1,
m_EqualMarkBoxIndex=-1,

- 130 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

m_EqualMarkBoxAtrib=-1,;
}

CAttribution::CAttribution(short MyType,long MyMazkBox long MyMarkAtrib,long MyEquaiBoxindex, long
MyEqualAtribute)

{
ASSERT((MyType==EQUAL_TO_MARKATRIB)),
ASSERT(MyMarkBox>=0);
ASSERT(MyMarkAtrib>=0);
ASSERT(MyEqualBoxIndex>=0);
ASSERT(MyEqualAtribute>=0);

m_Type=MyType;// Tipo de Atribuigio
m_ThisMaskBoxIndex = MyMarkBox;// Indice do Box que contem a marca
m_MarkAtrib = MyMarkAtrib,// Atributo da Marca

{{ Constantes de igualdade:
m_EqualNumConstant=0;
m_EqualStringConstant="";

{f Varidveis de igualdade:
m_EqualGatefndex=-1;
m_EqualMarkBoxIndex=MyEqualBoxIndex;
m_EqualMarkBoxAtrib=MyEqual Atribute;

}

/f Build Functions:
void CAttribution:: Create(short MyType,long MyMarkBox,long MyMarkAtrib,long MyEqualConstantOrGatelndex)

{
ASSERT((MyType==EQUAL TO NUM_CTE)||(MyType=EQUAL_TO_GATE));
ASSERT(MyMarkBox>=(},

ASSERT(MyMarkAtrib>=0};

m_Type=MyType;/ Tipo de Atribuigio
m_ThisMarkBoxindex = MyMarkBox,// Indice do Box que contem a marca
m_MarkAtrib = MyMarkAfrib;// Atributo da Marea
if (MyType=—EQUAL_TO NUM_CTE)
{
#f Constantes de igualdade:
m_EqualNumConstant=MyEqualConstantOrGateIndex,
m_EqualStringConstant="";
{/ Varidveis de igualdade:
m_EqualGatelndex=-1;
m_EqualMarkBexIndex=-1;
m_EquatMarkBoxAtrib=-1;
}

else

{
// Constantes de igualdade:
m_EqualNumConstant=0;
m_EqualStringConstant="";
// Varidveis de igualdade:
m_EqualGatelndex=MyEqualConstantOrGateIndex;
m_EquaiMarkBoxIndex=-1,
m_EqualMarkBoxAtrib=-1;
H

}

void CAttribution::Create(short MyType,long MyMarkBox,long MyMarkAtrib,CString MyE qualConstant)

{
ASSERT((MyType==EQUAL _TO STRING CTE)),
ASSERT(MyMarkBox>=0);
ASSERT(MyMarkAtrib>=0);
ASSERT(MyEqualConstant/=""),

m_Type=MyType:// Tipo de Atribuigho

m_ThisMarkBoxIndex = MyMarkBox;// Indice do Box que contem & marca
m_MarkAtrib = MyMarkAtrib,// Atributo da Marca

/f Constantes de igualdade:

m_EqualNumConstant=0,,

- 131 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

m_EqualStringConstant=MyEqualConstant,
/ Varidveis de igualdade:
m_EqualGatelndex=-1;
m_EqualMarkBoxIndex=-1;
m_EqualMarkBoxAtrib=-1;

void CAttribution: :Create(short MyType,long MyMarkBox,long MyMarkAtrib,long MyEqualBoxIndex, long
MyEqualAtribute)

{
ASSERT(MyType—EQUAL_TO_MARKATRIB));
ASSERT(MyMarkBox>=0);
ASSERTMyMarkAtrib>=0),
ASSERT(MyEqualBoxIndex>=0);
ASSERT(MyEqualAtribute>=0},

m_Type=MyType;// Tipo de Atribuicio
m_ThisMarkBoxIndex = MyMarkBox;// indice do Box gue contem a marca
m_MarkAtrib = MyMark Atrib;/ Atributo da Marca

/f Constantes de igualdade:
m_EquatNumConstant=0;
m_EqualStringConstant="";

H Variaveis de igualdade;
m_EqualGatelndex=-1,
m_EqualMarkBoxIndex=MyEquaiBoxIndex;
m_EqualMarkBoxAtrib=MyEqualAtribute;
}

#{ Data Management:
BOOL CAuibution: DoAttribution(CBoxArray* p_MyBoxAmay,CGateArray* p_MyGateArray)

{

ASSERT((m_Type!=UNDEFINED_TYPE)&&((m_Type—EQUAL_TO_MARKATRIB)(|(m_Type==EQUAL TO S
TRING_CTE)[{m_Type—EQUAL_TO_NUM_CTE)||(m_Type==EQUAL_TO_GATE)).

ASSERT {(p_MyBoxArrayl=NULL)&&(p_MyGateArray!=NULL)),

BOOL RetunFlag = FALSE;

/ find register:
CMarkAttribute TempAtrib = (p_MyBoxArray->GetAt{m_ThisMarkBoxIndex)) GetMarkAtrib(m_MarkAtrib);
if (i(p_MyBoxAiray->GetAt(m_ThisMarkBoxIndex)). HasMark()}

{

RetumFlag = FALSE,
ASSERT(FALSE),

H

switch (m_Type)
{
case EQUAL_TO_NUM_CTE:

{
ASSERT(TempAtrib.GetType()==INTEGER_ATRIB),
TempAtrib. SetAtrib{m_EqualNumConstant},
RetumFlag = TRUE;

break;

¥

case EQUAL_TO_STRING_CTE:
{
ASSERT(TempAtiib GetType(==TEXT_ATRIB),
TempAtrib.SetAirib(m_EqualStringConstant);
ReturnFlag = TRUE,
break;

}
case EQUAL _TO GATE:

{
if (TempAtrib.GetType()==INTEGER _ATRIB)
{
CGate TempGate = (p_MyGateArray-

>GetAt(m_EqualGatelndex)),
TempAdtrib.SetAtrib(TempGate.GetInteger()),
ReturnFlag = TRUE;

H
if (TempAtrib.GetType()==TEXT ATRIB)

-132-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgéo

{
CGate TempGate = (p_MyGateAmay-
>GetAt(m_EqualGatelndex));
TempAtrib. SetAtrib(TempGate. GetString();
Returnflag = TRUE;
}
break;
}

case EQUAL_TO_MARKATRIE:
{
ASSERT(m_EqualMarkBoxIndex>=0);
if (p_MyBoxArray->GetAt(m_EqualMarkBoxIndex). HasMark())

{
CMarkAtiribute RightAtrib = p_MyBoxArray-
>GetAt(m_EquaiMarkBoxIndex). GetMark Atrib{m_EqualMarkBoxAtrib);
ASSERT(TempAtrib. GetType()=—RightAtrib.GetType();
if (RightAtrib.GetType(==INTEGER_ATRIB)
{

TempAutrib. SetAtrib(RightAtrib.GetInteger Atrib());
Retumflag = TRUE;

¥
if (RightAtrib.Get Type()==TEXT_ATRIB)
{

TempAtrib. SetAtrib(RightAtrib.GetTextAtrib()),
ReturnFlag = TRUE,
H

else
{
if (TempAtrib.GetType()==INTEGER_ATRIB)
{

Tempatrib.SetAtrib(0);
Returntlag = TRUE,

}
if (TempAtrib.GetType)=TEXT_ATRIB)
{
TempAtrib. SetAtrib("");
RetumFlag = TRUE,;
H

break;

e

if (RetumnFlag)
{
{p_MyBoxArray->ElementAt(m_ThisMarkBoxIndex)).SetMark Atribute(TempAtrib};
}

retoumn RetumFlag;

t

fsenializagdo
IMPLEMENT _SERJAL (CAttribution,CObject, 1),
void CAttribution::Serialize(CArchive& ar }

{
ASSERT (FALSE),
i

/f Implementar Construtor de Cépia e Operador Igual
CAtribution: :C Attribution(const CAttribution& AtribSre)

{

Tipo de Atribuicso

m_Type=AtribSrc.m_Type;

Indice do Box que contem a marca
m_ThisMarkBoxIndex = AtribSre.m_ThisMarkBoxndex;
/ Atributo da Marca

m_MarkAirib = AtribSre.m_MarkAtrib,

// Constantes de igualdade:
m_EqualNumConstant=AtribSrc.m_EqualNumConstant;
m_EqualStringConstant=AtribSre.m_EqualStringConstant,

-133-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

/ Varidveis de igualdade:
m_EqualGateIndex=AtribSre.m_EqualGatelndex;
m_EquaiMarkBoxIndex=AtribSre.m_EqualMarkBoxIndex;
m_EqualMarkBoxAtrib=AtribSre.m_EqualMarkBoxAtrib;,
H

const CAttribution& CAttnibution::operator =(const CAttribution& AtribSre)
{

Tipo de Atribuigiio

m_Type=AtribSre.m_Type;

// Indice do Box que contem s marca
m_ThisMarkBoxIndex = AtribSrc.m_ThisMarkBoxIndex;
// Atributo da Marca

m_MarkAtrib = AtribSre.m_MarkAtrib,

/{ Constantes de ignaldade:
m_EquaiNumConstant=AtribSrc.m_EqualNumConstant;
m_EquaiStringConstant=AtribSrc.m_EqualStringConstant;
/f Veriaveis de igualdade:
m_EqualGatelndex=AtribSre.m_EqualGateIndex;
m_EqualMarkBoxlndex=AtribSrc.m_EqualMarkBoxIndex;
m_EqualMarkBoxAtrib=AtribSre.m_EqualMarkBoxAtrib;
return *this;

}

b L i
HCConditional Object Implementation

//eMFG Conditional Object

Ihversion 2.0

/Definition date:06/07/98

/MLast Modified:06/07/98

/Programmed by: Marco A. A, Silva

//Last changed by: Marco A. A. Silva

HConstrutor Vazio

/hodas os condicionais devem ser inicializados usando Create
CConditional::CConditional()

{

mp_Owmer =NULL;
m_Logic =NULO;
m NOT =FALSE;
m_LBox =NULO;
m_LAttrib =NULO,
m_Operator =NULG;

m_RType =NULO;
m_RIntCie =NULO;,
m_RS8trCte ="
m_RBox =NULQO,
m_RAttrib =NULO;

m_RGate =NULQ;
mp_Right =NULL;

mp_Down =NULL,

H

HFunglo de inicializagdo Create
Hobserve exemplos de condicionais simples abaixo:

H(boxlatributo<I}
/ICConditional* cond [= new CConditional;
flcond1->Create{NULO, myGraph,FALSE, box, atributo, LESSER, INT_CTE, 1);

f(~(box!atributo=="string"})

/ICConditional* cond? = new CConditional;

feond2->Create(NULO, myGraph, TRUE, box, atribute, EQUAL, STR_CTE,NULO,NULQ, "string"},
{l{(box11atributo>box2!atributo)

HCConditional* cond3 = new CConditional;

Heond3->Create(NULO, myGraph, FALSE, box], alributo1, GREATER, INT_BOX_ATB, box2, atributo2),

Hatributo string e gate string

-134-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

H(boxtatributo!=gate)

/fCConditional* cond4 = new CConditional,

Heondd->Create(NULO, myGraph, TRUE, box, atributo, EQUAL, STR_GATE_VAL, gate),
Htodas as checagens de tipo devem ser feitas pelo interpretador

void CConditional::Create (short myLogic,

CGraph* myGraph,
BOOL myNegative,
short myLBox, short myLAttrib,
short myOperator,
short myRType, short myRParam]1, short myRParam2, CString myRParam3)
{
m_Logic = myLogic;
mp_Owner = myGraph;
m_NOT = myNegative;
m_LBax =myLBox;
m_LAttrib = myLAttrib;
m_QOperator = myQOperator;
m_RType =myRType;

switch (m_RType)
{

case NULO:
break;
case INT_CTE:
{
m_RIntCte = myRParam1;
break;
}
case STR_CTE:

{
m_RStrCte = myRParam3;
break;

}
case INT BOX ATB:
{
m_RBox = myRParam1;
m_RAttrib = myRParam2,
break;

2

¥
case STR_BOX_ATB:

{

m_RBox =myRParaml,
m_RAttrib = myRParam2;

break;

¥
case INT GATE_VAL:
{
m_RGate = myRParam];
break;
H
case STR_GATE_VAL:
{
m_RGate =myRParsm];
break;
}

/ffungBes para composiglio da estrutura de avaliagio
H((box 1 tatributo] ==1)&&(~(box2latributo2=="'string"})
/CConditional* cond? = new CConditional;
/CConditional* cond2 = new CConditional:
/CConditional* cond3 = new CConditional,

- 1335

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

ffeond1->Create (AND);

/feond2->Create (NULQ, myGraph, FALSE, box1, atributol, EQUAL, INT_CTE, 1);

Heond3->Create (NULO, myGraph, TRUE, box2, atributo2, EQUAL, STR_CTE, NULQ, NULQ, "string"),
Heond]->AddRight{cond2);

Heond] ->AddDovm(cond3),

void CConditional:: AddRight(CConditional& myRBrother)
{
if (mp_Right!=NULL)
{

delete mp Right;
mp_Right=NULL,
}

mp_Right = new CConditional;
*(mp_Right) = myRBrother;

void CConditional:: AddDoewn(CConditional& myDDaughter)
{
if (mp_Down!=NULL)
{
delete mp_Diown;
mp_Down=NULL;
}
mp Down = new CConditional;
*(mp_Down) = myDDaughter,
}

void CConditional:: SetAlwaysTRUE()
{

m_Logic = ALWAYS_TRUE,
H

void CConditional::SetAlwaysFALSE()
{

m_Logic = ALWAYS FALSE;
}

ffungio de avaliaglio
HBOOL success = cond 1->Evaluate(};
BOOL CConditionel::Evaluate()

{

BOOL result; fioverall result

BOOL brother; /ieft brother result
BOOL daughter; /fdown daughter result

long RL LI Hnteger R and L-Values
CString RS, LS; /fString R and L-Values

if (mp_Right!=NULL)
brother = mp_Right->Evaluate(),

if (mp_Down!=NULL)
daughter = mp_Down->Evaluate();

switch (m_Logic)
éase NULO:
iwitch (m_Operator)
iase EQUAL:

{
switch (m_RType)
{

case INT_CTE:
if (lmp_Owner->GetBoxes()->GetAt{m_LBox) HasMark())
{
result = FALSE:
break;

- 136 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

}
>GetAt(m_LBox) GetMarkAtrib{m_LAttrib) GetlntegerAtrib();

LI=mp_Owner->GetBoxes()-

RI=m RIniCte;
result = LI=RI};
break;,
}
case STR_CTE:
{
if (!mp_Owner->GetBoxes()->GetAt(m_LBox).HasMark())

{

result = FALSE;

breal;

}

LS = mp_Owner->GetBoxes()-
>GetAt(m_LBox).GetMarkAmrib(m_LAttrib).GetTextAtrib(;

RS =m_RStrCte;

result = (LS==RSy,

break;

}
case INT_BOX ATB:
if ((mp_Owner->GetBoxes()->GetAt(m_LBox). HasMark())
{
result = FALSE;

break;

H
if (\mp_Owner->GetBoxes()->GetAt(m_RBox).HasMark())

{

result = FALSE,;
break;

}

>GetAt(m_LBox).GetMarkAtrib(m_LAttrib). GetIntegerAtrib();

LI = mp_Owner->GetBoxes()-

RI = mp_Owner->GetBoxes()-
>GetAt(m_RBox).GetMarkAtrib(m_RAttrib).GetlntegerAtribQ,

result = (LI==RI);

break;

: 5
case STR BOX_ATRB:
if {mp_Owner->CetBoxes()->GetAt(m_LBox).HasMark())

{
result = FALSE;
break;

}

if ('mp_Owner->GetBoxes()->GetAt{m_RBox). HasMark(})
{
result =FALSE,;

break;,
1

>GetAt(m_LBox) GetMarkAtrib(m_LAttrib).GetTextAtrib(;

LS = mp_Owner->GetBoxes()-

RS = mp_Owner->GetBoxes()-
>GetAt(m_RBox). GetMarkAtrib{m_RAtirib). GetTextAtrib();
result = (LS==RS),
break;
¥
case INT_GATE_VAL:

{
if (Imp_Owner->GetBoxes()->GetAt(m_LBox).HasMark())

{

result = FALSE;
break;

}

>GetA(m_LBox).GetMarkAtrib{m_LAttrib). GetlntegerAtrib();

LI = mp_Ovwmer->GetBoxes()-

RI=mp_ Owner->GetGates()-
>GetAm RGate).GetInteger(),

result = (LI==RD),

break;

H

-137-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

case STR_GATE_VAL:

if (Imp_Owner->GetBoxes()->GetAt(m_LBox).HasMark())
{
result = FALSE;
break;
}

>GetAt(m_LBox).GetMarkAtrib(m_LAttrib). GetTextAtrib);

LS = mp_Owner->GetBoxes()-

RS =mp Owner->GetGates()-
>GetAt{m_RGate). GetString(),
result = (LS==RS3);

break;
¥
b
break;
}
case GREATER:
i
switch (m_RType)
{
case INT_CTE:
if (tmp_Owner->GetBoxes()->GetAt(m_LBox).HasMark())
{
result = FALSE;
break;

}
>GetAt(m_LBox).GetMarkAtrib(m_LAttrib). GetIntegerAtrib();

LI =mp_Cwner->GetBoxes()-

RI=m RIntCte;

result = (LI>RI);
break;

}
case INT_BOX_ATRE:
if (mp_Owmner->GetBoxes()->GetAt(m_LBox).HasMark())

{
result = FALSE;
break;

t
if (Imp_Owner->GetBoxes()->GetA{m_RBox). HasMark())
{
result = FALSE;
break;
t

>GetAt(m_LBox).GetMarkAtrib(m_LAttrib).GetIntegerAtrib();

LI = mp_Owner->GetBoxes()-

RI =mp_Owner->GetBoxes()-
>CGetAt(m_RBox).GetMarkAtrib(m_RAttib) GetlntegerAtrib();

result = (LI>RI);
break;
}
case INT_GATE_VAL:
{
if ({mp_Owner->GetBoxes()->GetAt(m_LBox). HasMark())
{
result = FALSE;
break;
¥

LI = mp_Owner->GetBoxes()-
>GetAtm_LBox).GethMarkAtrib(m_LAitrib).GetIntegerAtrib();

RI=mp Owner->GetGates()-
>CGetAl(m_RGate) Getlnteger();

result = (LI>RI);
break;
}
I
break;
}
case LESSER:

£

-138 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producfo

switch (m_RType)
{

case INT_CTE:
if ({mp_Owner->GetBoxes()->GetAt(m_LBox).HasMark())
{
result = FALSE;
break;

H

>CetAt(m_LBox).GetMark Atrib(m_LAdttrib).GetlntegerAtrib(};

LI = mp_Owner->GetBoxes()-

RI =m_RIntCte;
result = (LI<RD);
break;

¥
case INT_BOX_ATB:
if {mp_Owner->GetBoxes()->GetAt(m_LBox).HasMark())

{
result =FALSE,
break;

¥
if {mp_Owner->GetBoxes()->CetAt{m_RBox).HasMark())
{
result = FALSE;
break;
}

>GetAt(m_LBox) GetMarkAtrib(m_LAdtirib). GetlntegerAtrib();

LI = mp_Owner->GetBoxes()-
RI = mp_Owner->GetBoxes()-
>GetAt(m_RBox).GetMarkAtrib(m_RAttrib). GetIntegerAtrib();
result = (LI<RI);
break;
}
case INT_GATE_VAL:
if (Imp_Owaer->GetBoxes()->CetAt(m_IBox).HasMark(})
i
result = FALSE;
break;
¥

>GetAi(m_LBox).GetMarkAtrib(m_LAttrib). GetintegerAtrib();

LI=mp_ Owner->GetBoxes()-

RI=mp_Owner->GetGates()-
>GetAt(m_RGate).Getlnteger();

result = (LI<RI),
break;
}
5
break;
}
b
break;,
H
case ALWAYS_TRUE:
{
retum (TRUE),
break;
}
case ALWAYS _FALSE:
{
retum (FALSE),
break;
H
case AND:
{
result = (brother&&daughter),
break;
}
case OR:

{
result = (brotherj|daughter);

-139 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

¥

break;
}
b
if fm_NOT)
refumn !(result);
else
return (result);

// Implementar Construtor de Cépia & Operador Igual
CConditional::CConditional{const CConditional& CondSrc)

{

}

c

i

m_Logic=CondSre.m_Logic; /Node Logical Operstor
m_NOT=CondSrc.m_NOT; /iNode Not Operator
m_LBox=CondSre.m_LBox;, #L-Value Box
m_LAttrib=CondSrc.m_LAttrib; HL-Value Attribute
m_Operator=CondSre.m_Operator; Hoperator type
m_RType=CondSrc.m_RType; //R-Value type
m_RIntCte=CondSre.m_RIntCte; //R-Value Integer Constant
m_RStCte=CondSrc.m_RStrCte; /R-Value String Constant
m_RBox=CondSrc.m_RBox; /R~Value Box
m_RAttrib=CondSrc.m_RAttrib; HR-Value Atiribute
m_RGate=CondSrc.m_RGate; /R-Value Gate

nmp_Owner=CondSre.mp Owner, /CGraph pointer

mp_Right = NULL,;
mp_Right = NULL;

if (CondSre.mp_Right!=NULL)
mp_Right = new CConditional (*CondSre.mp_Right),
else

mp_Right = NULL;

if (CondSre.mp _Down!=NULL)

mp_Down = new CConditional (*CondSrc.mp_Down);
else

mp Down =NULL,

onst CConditional& CConditional::operator =(const CConditional& CondSrc)

m_Logic=CondSre.n_Logic; //Node Logical Operator
m_NOT=CondSre.m_NOT; /Node Not Operator
m_IBox=CondSre.m_LBox, #L-Value Box
m_LAtiib=CondSre.m_LAttrib; HL-Value Attribute
m_Operator=CondSrc.m_Operator; Hoperator type
m_RType=CondSre.m_RType, /R-Value type
m_RIntCte=CondSre.m_RIntCte; //R-Value Integer Constant
m_R8trCte=CondSrc.m_RStrCte; /R-Value String Constant
m_RBox=CondSrc.m_RBox; /R-Value Box
m_RAtirib=CondSre.m_RAttrib; HR-Value Attribute
m_RGate=CondSrc.m_RGate; /R-Value Gate

mp_Owner=CondSrc.mp_Owmer;, /CGraph pointer
if (CondSre.mp_Right!=NULL)

{
if (mp_Right!=NUL1)
delete mp_Right,
mp_Right = new CConditional (*CondSrc.mp_Righty,
}

else
mp_Right = NULL;

if (CondSre.mp_Down!=NULL)
{
if (mp_Down!=NULL)

delete mp Down,
mp_Dovm = new CConditionat (*CondSre.mp_Down),

H

- 140 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

else
mp_Down =NULL,

return *this;
i

Hdestrutor funciona recursivamente
Hiberando toda & estrutura
CConditional::~CConditional(}
{
if (mp_Right!=NULL)
delete mp_Right;,
if (mp_Down!=NULL)
delete mp_Down;
}

Files Arefilt.h and Arcfilt.cpp - E-MFG Arc’s Filters
/ arcfilt h - eMIFG Arc Filter Definition:

/ version: 2.0

// Definition Date: 08/07/98

/f Last Modified:18/07/98

/{ programed by: Daniet M. S. Ferreira

// last modified by: Daniel M. S. Ferreira

// Objetivos: Definir & estrutura de dados dos filtros de
// atributos de marca dos elementos de conexfio
do grafo (arcos direcionais)

#ifndef ARCFILTERINCLUDED

class CArcFilter : public CObject

{

protected:

class CGraph* mp Owner; #f Owner Graph

short m_Type; /f Tipo de Filtro
long m_AttribNumber; // Niimero de atributos
long* mp_Attriblndex; // Indices dos atributos

shortm_CompositeFlag, // Flag para passagemn ou niio de marcas compostas

public:
/f Default Construction & Destruction
CArcFilter();
~CArcFilter();

// Build Functions

void Create(class CGraph* MyOwner, short MyType, long MyAttribNumber, long* MyAttribindex, short MyCompositeFlag);

i CMark AplyFilten(CMarké& SrcMark;
CMark ApplyFilter(CMarkd SreMark),

CArcFilter(const CArcFilter& FilterSre).
CArcFilter& operator = (const CArcFilteré FilterSre),
h
#define ARCFILTERINCLUDED 1
#endif

/ arcfilt.cpp - eMFG Arc Filter Implernentation:
/ version: 2.0

/f Definition Date: 08/07/98

/f Last Modified: 18/07/98

/I programed by: Daniel M. 3. Ferreira

// last modified by: Daniel M. S. Ferreira

{/ Objetivos: Implementar a estrutura de dados dos filtros de
{/ atributos de marca dos elementos de conexo

- 141 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

// do grafo (arcos direcionais)

#include "stdafx h" /I standard windows aplication
#include "elements.h” /E-MFG Standard Elements

#include'arcfilth* # E-MFG Arc Filter Definition

/Mdefine PASS_ALL 0,
/f#define NOT_PASS_ALL 1,
[Midefine PASS 2;

/#define NOT _PASS 3;

{/ Default Construction & Destruction
CArcFilter::CArcFilter()

{

mp_Ovwner=NULL; / Owner Graph
m_Type=PASS_ALL; // Tipo de Filtro
m_AttribNumber=0; // Niimero de atributos
mp_AttribIndex=NULL:/ Indices dos atributos

m_CompositeFlag = PASS_COMPOSITE; /# Flag para marcas compostas

}

CAurcFilter:~CArcFilter()
{
if {mp_AtiribIndex!=NULL)

{
delete [Jmp_AttribIndex;
mp_Attriblndex = NULL;
}

}

// Build Functions

void CArcFilter::Create(class CGraph* MyOwner, short MyType, long MyAttribNumber, long* MyAttribIndex, short
MyCompositeFlag)

{
ASSERT(MyOwner!=NULL);
ASSERT(
(MyType=—=PASS_ALL)||
(MyType==PASS)|
(MyType=—NOT_PASS_ALL)||
MyType==NOT_PASS)
%
mp_Cwner=MyOwner; # Owner Graph
m_Type=MyType, / Tipo de Filtro
m_AttribNumber=MyAttribNumber; / Numero de atributos
if (MyAttribNumber>0&&MyAttribIndex!=NULL)

{
mp_Atiriblndex = new long[MyAtribNumber];
for (long index = 0;index<MyAttnbNumber; index++)

{
mp_AttribIndex{index]=MyAttribIndexfindex]; / [ndices dos atributos

}

else

{
mp_AttribIndex = NULL;
}

ASSERT((MyCompositeFlag = PASS_COMPOSITE)|(MyCompositeFlag = NOT_PASS_COMPOSITE));
m_CompositeFlag = MyCompositeFlag;

H

CMark CArcFilter::ApplyFilter(CMark& SreMark)

{
CMark RetumMark = SrcMark;
switch (m_Type)

-142 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

{

case PASS_AILL:
{
/{ Do Nothing
break;

H
case NOT_PASS_ALL:

{

/f Sets All Attributes to NULL
ReturnMark. SetAllAttributes ToNulk();
break;

}
case PASS:

{

ASSERT(m_AttribNumber>0Y,

ASSERT(mp_AttribIndex!=NULL);

for (long index = 0; index<mp_Owner->GetAttribTemplates()->GetSize(); index++)

i
for all attributes verify if they are in the PASS list
BOOL Keep =FALSE;
for (long k=0;k<m_AttribNumber;k++)
{
if (index==mp_AtiribIndex[k])
1
Keep = TRUE;
H

H
if (IKeep)
{

/1 if they aren't in the PASS list Set them to NULL
RetumMark. SetAttrib ToNull(index);
h

}
break;

}
case NOT_PASS:

{

ASSERT(m_AttribNumbet>0),
ASSERT(mp_AitribIndex!=NULL);

for (long index = 0; index<m_AttribNumber; index++)

{
ASSERT(mp_AtimbIndex|indexj<mp_Owner->GetAtinbTemplates()->GetSize());
RetumMarlk. SetAttribToNull(mp_AttibIndex[index]);
¥
break;
}
}

switch (m_CompositeFlag)
{
case PASS_COMPOSITE:

{
Do Nothing
break,

H
case NOT_PASS_COMPGSITE:

{
// Sets All Attributes to NULL
ReturnMark. ResetComposition();
break;
}

b

return ReturMarl,
}

CArcFilter::CArcFilter(const CArcFilter& FilterSre)

{

mp_Owner=FilterSrc.mp Owner, /f Owner Graph
m_Type=FilterSre.m_Type; / Tipo de Filtro
m_AttribNumber=FilterSre.m_AttribNumber, /# Niumero de atributos

if (FilterSre.m_AttribNumber>0&&FilterSre.mp_AttribIndex!=NULL)

- 143 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

{
mp_AttribIndex = new long{FilterSrc.m_AttribNumber];
for (long index = 0;index<FilterSrc.m_AttribNumber; index-++)
{
mp_AitribIndexfindex]=FilterSre.mp_AttribIndex[index]; / Indices dos atributos
}
H

else
{
mp_Attriblndex = NULL;

m_CompositeFlag = FilterSre.m_CompositeFlag;
i

CArcFilter& CAxcFilter::operator = (const CArcFilter& FilterSrc)

{

mp_Owner=FilterSre.mp_Owner, # Owner Graph
m_Type=FilterSrc.m_Type, # Tipo de Filiro
m_AttribNumber=FilterSre.m_AttribNumber, // Numero de atributos

if (mp_AttribIndex!=NULL)

{

delete {Jmp_AttribIndex;
mp_AttribIndex = NULL,
}

if (FilterSre.m_AttribNumber>0& &FilterSre.mp_AttribIndexi=NULL)

{
mp_Aitribindex = new long{FilterSre.m_AttribNumber];
for (long index = 0;index<FilterSrc.m_AttribNumber; index-++)

{
mp_AttribIndex[index]=FilterSre.mp_AtiribIndex{index]; // Indices dos atributos
}
}

else
{
mp_AttribIndex = NULL;

m_CompositeFlag = FilterSrc.m_CompositeFlag;
return *this;
}

Files Array.h and Array.cpp - Structural Elements Arrays

// CLinkedList Extension Classes

/ Defined at : 23/07/98

/f Last Modified ; 24/07/98

// Programmed by : Marco A, A. Silva
/f Modified by : Mareo A. A. Silva

/CLinesAray

//CLinkedList Extension Class
ffarray of CWordsArray

i

#ifadef ARRAYS INCLUDED

class CLinesArray : public CLinkedList

{
public:
CLinesArmay();
~CLinesArray();
publie:
void AddOrdered(CWordsArmay StrArrArg, short cot);
void Add(CWordsArray StrArrArg);
CWordsAmay GetAt(int n);
CWordsArray& ElementAt(int n);

-144 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

HCMarkAtinbArray

HCLinkedList Extension Class

Harray of CMarkAttribute

i

class CMarkAttribAzray : public CLinkedList

{

public:
CMarkAttribArray();
~CMarkAttribArray(),

public:
void Add(CMarkAttribute Arg);
CMarkAttribute GetAt(int n);
CMarkAttribute& ElementAt(int n);
5

/ICArcArtay

//CLinkedList Extension Class

Hfarray of CArc

14

class CArcArray : public CLinkedList

{

public:
CArcArray(),
~CArcArray();

public:
void Add(CArc Arg);
CArc GetAt(int n);
CArc& ElementAt(int n);
h

HCGateArray

HCLinkedList Extension Class

Harray of CGate

"

class CGateArray : public CLinkedList

{

public:
CGateArray();
~CGateArray(};

public:
void Add(CGate Arg),
CGate GetAt(int n);
CGated: ElementAt(int n);
4

HACTransitionArray

/CLinkedList Extension Class

fHarray of CTransition

i

class CTransitionArray : public CLinkedList

{

public:
CTransitionArray();
~CTransitionArray(),
public:
void Add(CTransition Arg);
C'ransition GetAdt(int n);
CTransition®& ElementAt(int n);
L
HCBoxArray
H#CLinkedList Extension Class
Harray of CBox

W
class CBoxArray : public CLinkedList

public:

- 145 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

CBoxArray(};
~CBoxArray();

public:
void Add(CBox Arg);
CBox GetAt(int n);
CBox& ElementAt(int n);

5

HICMarkArray

/ICLinkedList Extension Class

Harray of CMark

7

class CMarkArray : public CLinkedList

{

public:
CMarkAmnay();
~CMarkArray();

public:
void Add(CMark Argy,
CMark GetAt(int n);
CMarké& ElementAt(int n);

b

H#CCondArmay

/ICLinkedList Extension Class

/farray of CConditional

1

class CCondArray : public CLinkedList

{

publie:
CCondArray();
~CCondArray();

CCondAmay::CCondArray(const CCondArrayé& arg)./// Danjel
CCondArray& operator =(const CCondArray& arg),

public:
void Add(CConditional& Arg);
CConditional GetAt(int n);
CConditional& ElementAt(int n);

|5

HCAtrbnArray

HCLinkedList Extension Class

Hfarray of CAttribution

!

class CAttrbrArray : public CLinkedList

{

publie:
CAitrbnArray();
~CAttrbnArmray(;
CAttrbnArray(const CAttrbnArray& arg),
CAtirbnArray& operator =(CAttrbnAray& arg),
public;
void Add(CAttribution Arg),
CAtiribution GetAf(int n),
CAttribution& ElementAt(int n);
b
HCIntArray
H#CLinkedList Fxtension Class
{farray of long

#
class ClntArray : public CLinkedList
{
public:
ClntArray(),
~CIntArray();

- 146 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

publie:
void Add(short Arg),
short GetAt(int n);
short& ElementAt(int n),

HC AtbnMatrix

//CLinkedList Extension Class

HList of Atribution Arrays

class CAtbnMairix : public CLinkedList

public:
CAtbnMatrix();
~CAtbnMatrix(};
CAtbnMatrix(const CAtbnMatrix& arg);//Daniel
CAtbnMatrix& operator =(const CAtbnMatrixé arg),

public:
void Add(CAtobnArray Arg);
CAttrbnArray GetAt(int n);
CAtirbnArray& ElementAt(int n);

b

Hendif

#define ARRAYS_INCLUDED 1

#f CLinkedList Extension Classes

H Defined at : 23/07/98

Last Modified : 24/07/98

Programmed by : Marco A. A, Silva
/ Modified by : Marco A. A. Silva

#pragma warning(4270:diseble)

#include "stdafx.h"

#include "definitions.h" HE-MFG Constant Definitions

#include "wordsarray.h* {/Extension of String Arrays

#include "basis.h" /E-MFG Basis Class

#include "graph.h" HE-MFG Graph Components
#include "marks.h" JEMEG Marks Definition
#include "arcs h" HE-MFG Arcs Definition
#include "boxes.h” HE-MEG Boxes Definition

#include "transith" HEMEG Transition Definition

#include "gates.h" HE-MFG Gates Definition

#linclude "list.h" //Licked List Definition

#include "arrays.h"
e T
/CLinesArray

/fCLinkedList Extension Class

/larray of CWordsArray

"

CLinesArray::CLinesArray()

{

h

CLinesArmray::~CLinesArmay(}

i
}

void CLinesArmay:: AddOrdered(CWordsArray StrAmArg, short col)
CNode* Newhlode;
CNode* cursor,
CNode* previous,
CString keyl, key2;

//nfic insere ainda
BOOL INSERT = FALSE;

-147 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfio

/feria nova string array baseada no argumento
CWordsArray* NewString = new CWordsArray (StrArrArg);

/feria novo nédulo apontando para nova string array
NewNoede = new CNode{STRING_NODE);
NewNode->mp_String Array = NewString;,

/eoloca cursor na sentinela
cursor =mp_Sentry,
previous = mp_Sentry,

Henquanto nio for Gltimo elemento ou hora de inserir
while ((cursor->mp_NextNode!=NULL)&& ({INSERT))

{
/fguarde o dltimo
Pprevious = cursor;
/favanga na lista
cursor = cursor->mp_NextNode;
/lcompara as chaves
keyl = cursor->mp_StringArray->GetAt(col),
key2 = NewString->GetAt(col);
if (key1>key2)
INSERT = TRUE,; //horz de inserir
}

{facresce de um elemento
m_nt+,

if (INSERT)
{

previous->mp_NextNode = NewiNode,
NewNoede->mp_NextNode = cursor;
}

else

{
/fno final da lista
cursor->mp_NextNode = NewNode;

}
}

void CLinesArray:: Add{CWordsArmay StrAmAzg)

AddString(StrArArg);

CWordsArray CLinesArtay::GetAt{int n)
{

}

CWordsArray& CLinesArray::ElementAt(int n)
{

H

e T T
HCMarkAttribArray

HCLinkedList Extension Class

Harmay of CMarkAttribute

i

CMarkAttribAmay: . CMarkAttribArray()

{

}

CMarkAttribArray::~CMark AttribArray()
{
}

void CMarkAttribAray::Add(CMarkAttribute Arg)
{

return(GetString At(n));

return{StringElementAt(n)),

-148 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

AddAttribute(Arg),

CMarkAttribute CMarkAttribArray::GetAt(int o)
{

}

CMarkAttribute& CMarkAttribArray::ElementAt(int n)
{

}

T
/ICArcArray

/CLinkedList Extension Class

Harray of CArc

"

CArcArray::CArcArray()

{

}

CArcArray: ~CArcArray()

{
K

void CArcArray:: Add(CArc Arg)
{

}

return(GetAttribute At(n));

return(AttributeElementAt(n)),

AddArc(Arg),

CAre CArcArmay::GetAt(int n)
{

}

CArcé CArcAmay: ElementAt(int n)
{

retumn(GetArcAt(n));

return(ArcElementAt{n)),

}
T T
/ICGateArray

HCLinkedList Extension Class

Hatray of CGate

7

CGateArray::CGateArray()

{

}

CGateArray: ~CGateArray()
{
i

void CGateAsray::Add(CGate Arg)

AddGate(Arg);

CGate CGateArray::GetAt(int n)

{
retumn{GetGateAt(n));
}
CGate& CGateArray:ElementAt(int n)
{
retum(GateElementAt(n));
}

T T

- 149 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

/CTransitionArray

MCLinkedList Extension Class

Harray of CTransition

i
CTransitionArray::CTransitionArray()
{

}

CTransitionAmray::~CTransitionArray()
{
}

void CTransitionArray:: Add(CTransition Arg)

AddTrensit(Arg);

CTransition CTransitionArray::GetAt(int 1)
{

1

CTransition& CTransitionArray::ElementAt(int n)
{

H

L T T
HCBoxAmay

//CLinkedList Extension Class

Harray of CBox

i

CBoxArray:;CBoxAmay()

4

}

CBoxArray::~CBoxArray()
{
1

void CBoxAtrray::Add{CBox Arg)
{

}

retun{Get IransitAt(n));

return(TransitElementAt(n));

AddBox(Arg),

CBox CBoxArray::GetAt(int n)
{

H

CBox& CBoxArrey: ElementAt{int n)
{

}

L L T T T T
HC Array

/fCLinkedList Extenstorn Class

Harray of CMark

#

CMarkAmay::CMarkArray()

{

}

CMarkArray: ~CMarkAsray()
{
H

void CMarkArray:: Add(CMark Arg)
{

return(GetBoxAt(n));

return(BoxElementAt(n));

-150 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

AddMark(Arg);
}

CMark CMarkAmay::GetAt(int m)
{

'

CMark& CMarkArray::ElementAt(int n)
{

}

L L T T
HCCondArray

HCLinkedList Extension Class

Harray of CConditional

i

CCondArray::CCondArray()

{

}

ClondArmay:~CCondArmay()
{

i
Daniel

CCondArray::CCondAray(const CCondArray& arg)
{

short i,j;

CNode* cursor;

for (i=0:i<arg.m_n;i++)

return{GetMarkAt(n));

return(MarkElementAt(n));

cursor = arg.mp_Sentry;//daniel
for (j=0y<=i;j++)
curser = cursor->mp_NextNode;
ASSERT{eursor->m_type==CONDS_NODE),
AddConditional(*(cursor->mp_CondsArray));
H
}

CCondAmay& CCondArray::operator =(const CCondArray& arg)

i
short Lj;
CNode* cursor;

if (&arg!=this)

RemoveAll(),
for (i=0;i<arg.m_n;i++)

cursor = arg.mp_Sentry;//daniel
for (=0;j<=iyj++)
cursor = cursor->mp_NextlNode,
ASSERT(curser->m_type==CONDS_NODE),
AddConditional(*(cursor->mp_CondsArray)),

H

return *(this);
¥

void CCondArray::Add(CConditional& Arg)
{

}

CConditicnal CCondArray::GetAt(int n)
{

}
CConditional& CCondArray::ElementAt(int n)

AddConditional{Arg),

retumn(GetConditional At(n)};

-151-

Contrelador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

return{ConditionalElementAt(n));

b e
HChtAmay

HCLinkedl ist Extension Class

fHlammay of long,

i

ClntArray::ClntArray()

{

H

CntAmay::~ChatArray()
{
}

void ClntArray:: Add(short Arg)
{

}

short CintAmay::GetAt(int n)
{

b

short& ClntArray::ElementAt(int n)
{

}

L L L i e
HCAttrbnArray

/CLinkedList Extension Class

/farray of C Attribution

"

CAttrbnArray: . CAttrbnAmay(

i

}

CAttrbnArray: ~CAttrbnArray()

{
H

CAttrbnAmay::CAtirbnArray(const CAttrbnArray& arg)

AddInteger(Arg);
return(GetIntegerAt(n));

return{IntegerElement A(n)),

{
RemoveAll();
CNode* myNode;
if (arg.m_n>0)
myNode = arg. mp_Sentry->mp_NextNode;
for (short i=0;i<arg.m_n;i+)
{
AddAttribution(*(myNode->mp_AttribArray)),
myNode = myNode->mp NextNode;
}
}

CAttrbnArray& CAttrbnArray::operator =(CAftrbnArmay& arg)
{
if (&arg!=this)
i

RemoveAll(),

CNode* myNode,

if (arg.m_n>0)
myNode = arg.mp_Sentry->mp_NextNode;

for (short i=0;i<arg.m n;i++)
{
AddAgribution{*(myNode->mp_AttribArray));
myNode = myNode->mp_NextNode;

-152 -

Controlader E-MFG para Sistemas Integrados e Flexiveis de Producdo

}
return *(this);
}

void CAttrbnArray:: Add(C Attribution Arg)
{

}

CAttribution CAttrbnArray.:GetAt(int n}
{

}

CAttribution& CAtttbnArmay::ElementAt(int n)
{

}

b T
HCAttrbnMatrix

/CLinkedList Extension Class

List of Atribution Arrays

i

CAtbnMatrix::CAtbnMatrix()

{

}

CAtbnMatrix::~CAtbnMatrix()
{
b

CAtbnMatrix:: CAtbnMatrix(const CAtbnMatrix& arg)/ Daniel

AddAttribution{Arg);
return{GetAttributionAt(n}));

retum(AttributionElement At{n));

{
CNode* cursor;
for (short i=0;i<arg.m_n;i++)
{
cursor = arg mp_Sentry;/daniel
for (short j=03<=i;j++)
curser = cursor->mp_NextNode;
ASSERT(cursor->m_type==ATTRIARRAY_NODE),
AddAttribArray(*(cursor->mp_AtbnMatrix)Y,
}
H

CAtbnMatrix& CAtbnMatrix::operator =(const CAtbnMatrixé arg)

{
if (&argi=this)

{

CNode* cursor,

RemoveAll(;

for (short i=0;i<arg.m_m;i++)
{
cursor = arg.mp_Sentry,//daniel
for (short j=0;j<=i;j++)

cursor = eursor->mp_NextNode;

ASSERT{cursor->m_type==ATTRIARRAY NODE),
AddAttribArray(*(cursor->mp_AtbnMatrix)),
}

}
return *(this}),
}
void CAtbnMatrix;: Add(CAtrbnAmay Arg)

AddAttribArray(Arg);
}

CAttrtbnArray CAtbnMatrix::GetAt(int n)

{
return{GetAtiribArrayAt(n)),

- 183 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

1

CAtubnArmay& CAtbnMatrix: ElementAt(int n}
{

H

retumn(AtribAmayElementAt(n));

Files List.h and List.cpp - CLinkedList Node and Implementation

//Linked List Definition

/hversion 1.0

/MDefinition Date: 19/06/98

/fLast Modification: 20/06/98
HProgrammed by : Marco A. A. Silva
{fLast modified by : Marco A. A. Silva

/Definir estrutura alternativa para amrays

class CNode : public CObject
{
public:
CNode(long MyType = NULQ),
~CNode();
public:
int m_type;
CNode* mp_NextNode:

CWordsArmray* mp_StringArray,

CMarkAtiribute* mp_MarkAtArray,

CArc* mp_ArcsArray:
CBox* mp_BoxesArray;

CGate* mp_GatesArray,

CTransition® mp_TransArmay;

CMark* mp_MarksArray;
CConditional* mp_CondsArray;
CAttrbution* mp_AttribArray;
short* mp_IntArrey;

class CAtirbnArray* mp_AtbnMatrix;
n

class CLinkedList: public CObject
{

public:
CLinkedList),
~CLinkedList(};
public:
int GetSize(),
void RemoveAll(),
HCWordsArray Array
public;
void AddString(CWordsArray StrArrArg);
CWordsArray GetStringAt(int n);
CWordsArray& StringElementAt(int n);
HCMarkAunibute Array
public:
void AddAttribute{CMarkAttribute AttributeArg);
CMarkAttribute GetAttributeAt(int n);
CMarkAttribute& AttributeElementAt(int n};
HCArcs Array
publie:
void AddArc(CArc ArcArg);
CArc GetArcAt(int n);
CArc& ArcElementAt(int n),
HICBoxes Array
public:

-154 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

void AddBox(CBox BoxArg),
CBox GetBoxAlt(int n);
CBox& BoxElementAt(int n);
HCGates Array
public:
void AddGate(CGate GateArg);
CGate GetGateAt(int n),
CGated& GateElementAi(int n);
HCTransitions Array
public:
void AddTransit(CTransition TransitArg);
CTransition GetTransitAt(int n);
CTransition& TransitElementAt(int n);
/ICMarks Aray
public:
void AddMark(CMark MarkArg);
CMark GetMarkAl(int n);
CMark& MarkElementAt(int n};
CMark RemoveMarkAt(int n);
H#CConditional Array
public:
void AddConditional{CConditional& CondArg),
CConditional GetConditionalAt{int n);
CConditional& ConditionalElementAt(int n);
HCAttribution Array
public:
void AddAttribution(CAttribution AttrbArg);
CAttribution GetAttributionAt(int n;
CAttribution& AttributionElementAt(int n);
{/short Array
public:
void AddInteger(short IntArg);
short GetIntegerAt(int n};
shorté& IntegerElementAt(int n);
HC Attribution Matrix
public:
void AddAttribArray(class CAtirbnArray Arg);
class CAttrbnArray GetAttribArrayAt(int n);
class CAttrbnAmray& AttribArrayElementAt(int n);
public:
long m m,
CNode* mp_Sentry;
H
HLinked List Implementation
fiversion 1.0

/Definition Date: 19/06/98

/.ast Modification: 08/07/98
/Programmed by : Marco A. A. Silva
HLast modified by : Daniel M. 8. Ferreira

HMmplementar estrutura alternativa para arrays

#inchude <stdafx.h>

#include "definitions.h" HE-MFG Constant Definitions

#include "wordsarray.h" //Extension of String Asrays

#inchude "basis.h" HE-MFG Basis Class

#inchude "graph.h* HE-MFG Graph Components
#include "marks.h" HEMFG Marks Definition
#include "arcfilt.h" /E-MFG Arc Filter Definition

#include "arcs.h" H/E-MFG Arcs Definition
#include "boxes.h" {E-MFG Boxes Definition

-155-

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Produciio

#include "transit.h" HE-MFG Transition Definition

#include "gates.h" /E-MFG Gates Deftnition
#include "listh" /Linked List Definition
#include "arrays.h" {/Arrays Extension Class

CNode::CNode(ong MyType)

{
m_type =MyType;
mp_NextNode=NULL;

mp_StringArray =NULL;
rap_MarkAtArray = NULL;
mp_ArcsArray =NULL,
mp_BoxesArray =NULL;
mp_GatesArray =NULL;
mp_TransArray =WNULL;
mp_MarksArray = NULL;
mp_CondsArray =NULL;
mp_AtiribAmay =NULL,
mp_IntAray =NULL;
mp_AtbnMatrix = NULL;
}

CNode::~CNode(}

{
if (mp_String Amray!=NULL})
delete mp_StringArray;

if (mp_MarkAtArray!l=INULL)
delete mp_MarkAtAsray;

if (op_MarksArray!=NULL)
delete mp_MarksArmay;

if (mp_ArcsArrayt=NULL)
delete mp_ArcsArray;

if (mp_BoxesArray!=NULL)
delete mp_BoxesArray;

if {mp_TransArray!=NULL)
delete mp TransArray;

if (mp_GatesAmray=NULL)
delete mp_(atesArray;

if (mp_CondsArmay!=NULL})
delete mp_CondsArray;

if (mp_AttribAsray!=NULL})
delete mp_AttribArray;

if (mp_AtbnMatrix!=NULL)
delete mp_AtbnMatrix;

if (mp_IntArray!=NULL)
delete mp_IntArmay;
}

CLinkedList::CLinkedList()
{

m n=0

mp_Sentry = new CNode(NULQO);
}

CLinkedList::~CLinkedLizst()
{
short 1;
CNode* next;
CNode* trash,
next = mp_Sentry;
for (i=0; i<=m_n; i+

-156 -

Contrelador E-MFG para Sistemas Integrados e Flexiveis de Producio

{
trash = next;
next = trash->mp_NextNode;
delete trash;
H
H

void CLinkedList::RemoveAll()
i
short i,
CNode* next;
CNode* trash,
next = mp_Sentry;
for (i=0; i<=m_n; i+H)
{
trash = next;
next = frash->mp NextNode;
delete trash;
}

m_n=40;
mp_Sentry = new CNode(NULOY,

int CLinkedList::GetSize()
{

}

return m_n;

HArray de CWordsArray
void CLinkedList:: AddString(CWordsArray StrArrArg)
{
CNode* NewNode;
CNode* cursor;
CWordsArray* NewString;
NewString = new CWordsArmay,
*(NewString)=StrArArg;
cursor = mp_Sentry,
while (cursor->mp_NextNode!=NULL)
eursor = cursor->mp_NextNode;
m_nt++;
NewNode = new CNode(STRING_NODE),
cursor->mp_NextNode = NewNode;
NewNode->mp_StringArray = NewString,
}

CWordsArray CLinkedList::GetString At(int n)
{
ASSERT (n>=0);
ASSERT (n<m_n);
short i;
CNode* cursor,
cursor = mp_Sentry;
for (i=0si<=n;i++)
cursor = cursor->mp NextNode;

ASSERT(cursor->m_type==STRING_NODE);

retumn *(cursor->mp_StringArray);

}
CWordsAmay& CLinkedList::StringElementAt(int n)
{

ASSERT (n>=0).// Daniel

ASSERT (n<m_n);

short i;

CNode* cursor;

cursor = mp_Sentry;
for (1=0;i<=n;i++)
cursor = elrsor->mp_NextNode;

- 157 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

ASSERT(cursor->m_type—STRING_NODE),

return *(cursor->mp_StringArray);

JArray de CMarkAttribute
void CLinkedList:: AddAttribute(CMark Attribute AttributeAsg)
{
CNode* NewNode,
CNode* cursor;
CMarkAttribute* NewAttribute;
NewAttribute = new CMarkAtiribute;
*(NewAdttribute)=AttributeArg;
cursor =mp_Sentry;
while (cursor->mp NextNodel=NULL}
cursor = cursor->mp_NextNode;
m_nt+;
NewlNode = new CNode(MARKAT NODE),
cursor->mp_NextNode = NewNode;
NewNode->mp_MarkAtArmray = NewAtiribute;
H

CMarkAitribute CLinkedlist::GetAtiributeAt(int n)
{
ASSERT (n>=0),
ASSERT (n<m_n),
short i;
CNode* cursor;
eursor = mp_Sentry;
for (i=0ji<=n;i+t)
cursor = cursor->mp_NextNode;

ASSERT{cursor->m_type—=MARKAT NODE},

retumn *(cursor->mp_MarkAtArray);
}

CMarkAttribute® CLinkedList:: AttributeElementAt(int n)
{

ASSERT (n>=0),// Daniel

ASSERT (n<m_n),

short 1i;

CNode* curser;

cursor = mp_Sentry;

for (i=0;i<=n;i++)

cursor = cursor->mp_NextNode;

ASSERT(cursor->m._type—MARKAT NODE);

return *{cursor->mp_MarkAtAsray);

{{Axray de CArc

void CLinkedList:: AddArc(CArc ArcArg)

{
CNode* NewNode;
CNode* cursor;
CArc* NewArc;
NewAre = new CArc,
*(NewArc)=ArcArg,
cursor = mp_Sentry;
while (cursor->mp_NexiNode!=NULL)

cursor = cursor->mp_NextNode,

m_n++;
NewNode = new CNode{ARC_NODE),
cursor->mp_NextNode = NewNode;
NewNode->mp_ArcsArray = NewAre;

- 158 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

CAre CLinkedLast::GetArcAt(int n)
{
ASSERT (n>=0y,
ASSERT (p<m_n},
short 1;
CNode* cursor,
cursor = mp._Sentry;
for (i=0;i<=n;i+H)
cursor = cursor->mp_NexiNode;

ASSERT(cursor->m_type=—=ARC_NODE),

retumn *(curser->mp_ArcsArray);
¥

CArc& CLinkedList:: ArcElementAt(int n)
{
ASSERT (n>=0);// Daniel
ASSERT (n<m_n);
short 1;
CNode* cursor:,
cursor = mp_Sentry;
for (i=0;i<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type=ARC_NODE),

return *(cursor->mp_ArcsArray),

/fArray de CBox
void CLinkedList:: AddBox(CBox BoxArg)
{
CNode* NewNode;
CNode* cursor;
CBox* NewBox;
NewBox = new CBox:
*(NewBox)=BoxArg:
cursor = mp_Sentry;
while (eursor->mp_NextNode!=NULL)
cursor = cursor->mp_NextNode,
m _pft,
NewNode = new CNode(BOX_NODE);
cursor->mp_NextNode = NewNode;
NewNode->mp_BoxesArmmay = NewBox;
-

CBox CLinkedList::GetBoxAt(int n)
{
ASSERT (n>=0),
ASSERT (n<m_n);
short i;
CNode* cursor;
cursor = mp_Sentry;
for (i=0;i<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cutsor->m_type==BOX_NODE),

return *(cursor->mp_BoxesArray);
}

CBoxé& CLinkedList:‘BoxElementAt(int n)
{
ASSERT (n>=0);// Daniel
ASSERT (n<m_ny;
short i;
CNode* cursor;
cursor = mp_Sentry;
for (i=0;i<=n;i+H)
cursor = cursor->mp_NextNode;

-159.-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producéio

ASSERT(cursor->m_type==BOX_NODE);

return *(cursor->mp_BoxesArmay);
}

H/Array de CGate
void CLinkedList:: AddQate(CGate GateArg)
{
Chode* NewNode;
CNode* cursor;
CGate* NewGate,
NewGate = new CGate;
*(NewGate)=GateArg,
cursor =mp_Sentry,
while (cursor->mp_NextNodel=NULL)
cursor = cursor->mp_NextNode;
m_ntt
NewNode = new CNode(GATE_NCDE);
cwrsor->mp_NextNode = NewNode;
NewNode->mp_GatesArray = NewGate;
H

CGate CLinkedList::GetGateAt(int 1)
{
ASSERT (n>=0);
ASSERT (n<m_n);
short i;
CNode* cursor,
cursor = mp_Sentry;
for (i=0si<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type=GATE_NODE};

return *(cursor->mp_QatesArray),
}

CGate& CLmkedList::GateElementAt(int n)
{
ASSERT (n>=0),// Daniel
ASSERT (n<m n),
short i,
CNode* cursor;
cursor = mp_Sentry;
for ((=0i<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type==GATE_NODE),

retum *(cursor->mp_Gates Array),
H

/I Array de CTransition
void CLinkedList:: AddTransii(CTransition TransitArg)
{
CNode* NewNode;
CNode* cursor;
CTransition* NewTransit;
NewTransit = new CTransition;
*(MNewTransit)=TransitArg;
cursor = mp_Sentry;
while (cursor->mp_MNextNode!=NULL)
cursor = cursor->mp_NextNode;
m_nt,
NewNode = new CNode(TRANSIT NODE);
cursor->mp_NextNode = NewNode;
NewNode->mp_TransArray = NewTransit;

}

CTransition CLinkedList::GetTransitAt(int i)
{

- 160 -

Controlader E-MFG para Sistemas Integrados e Flexiveis de Producio

ASSERT (n>=0);
ASSERT (n<m_n);
short i;
CNode* cursor,
cursor = mp_Sentry;
for (i=0;i<=n,i++)
cutsor = cursor->mp_NextNode;

ASSERT(cursor->m_type==TRANSIT NODE);

retum *(cursor->mp_TransArmay),
}

CTransition& CLinkedList:: TransitElementAt(int n)
{
ASSERT (n>=0),// Daniel
ASSERT (n<m_n};
short i;
CNode* cursor;
cursor = mp_Sentry;
for (iI=0;i<=mit++t}
cugsor = cursor->mp_NextNode;

ASSERT(cursor->m_type==TRANSIT NODE);

return *(cursor->mp_TransArray),
H

//Array de CMark

void ClinkedList:: AddMark(CMark MarkArg)

{
CNode* NewNode,
CNode* cursor;
CMark* NewMark,
NewMark = new CMark;
*(NewMark)=MarkArg,
cursor = mp_Sentry;,
while (cursor->mp_MextNode!=NULL)

cursor = cursor->mp_NextNode;

m_n++,
NewNode = new CNode(MARKS_NODE);
cursor->mp_NextNode = NewNode;
NewNode->mp_MarksAmay = NewMark;

}

CMark CLinkedList::GetMarkAt(int n)
{
ASSERT (n>=0),
ASSERT (n<m_n),
short i
CNode* cursor;
cursor = mp_Sentry;
for (i=0si<=n;i++)
eursor = cursor->mp_NextNode,

ASSERT(cursor->m_type==MARKS_NODE},

retum *(cursor->mp_MarksArray);
¥

CMark& CLinkedList::MarkElementAt(int n)
{
ASSERT (n>=0),// Daniel
ASSERT (n<m_n),
short i;
CNode* cursor,
cursor =mp_Seniry;
for (i=0;i<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type==MARKS_NODE);

- 161 -

Controlader E-MFG para Sistemas Integrados e Flexiveis de Producio

return *(eursor->mp_MarksArray),
}

CMark CLinkedEist:: RemoveMarkAt(int n)
{
ASSERT (n>=0);
ASSERT {n<m_n},
short i;
CNode* cursor;
CNode* removed;
CMark retMark;
cursor = mp_Sentry,
for (i=0;i<mi4++)
{
if (cursor->mp_NextNode!=NULL)

cursor = cursor->mp_NextNode;

}

else

{
ASSERTFALSE),
H

}

ASSERT(cursor->m_type—MARKS_NODE||({(cursor->m_type==NULO)&&n==0)));

removed = cursor->mp_NextNode;
if (removed!=NULL})

/fshort-cireuits the connection
if (cursor->mp_NextNode->mp_NextNode != NULL)
cursor->mp_NextNode = cursor->mp_NextMode->mp_NextMode;
else
cursor->mp_NextNode = NULL,
m ne-,
retMark = *(removed->mp_MarksArray),
removed->mp_NextNode=NULL;#/ Daniel

delete removed,
}

return retark;
H
/Array de CConditional
void CLinkedList:: AddConditiona}(CConditional& ConditionalArg)
{

CNode* NewNode;

CiNode* cursor;

NewNode = new CNode(CONDS_NCDE),
NewlNode->mp_CondsArmray = new CConditienzal (Conditional Arg);
cursor = mp_Sentry;
while (cursor->mp_NextNode!=NULL)

cursor = cursor->mp_NextNode,
m_n++;
cursor->mp_NextNode = NewNode;

}
CConditional CLinkedList::GetConditicnalAt(int n)
{

ASSERT (n>=0),

ASSERT (n=<m_n);

short {;

CNode* cursor;

cursor =mp_Sentry;
for (=0ii<=mi++)

curser = cursor->mp_NextNode;
ASSERT(curser->m_type==CONDS_NODE),

return *{cursor->mp_CondsArray);

-162 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Producio

CConditicnal& CLinkedList::ConditionalElementAt(int n)
{

ASSERT (n>=0);// Daniel

ASSERT (n<m_n};

short 1;

CMNode* cursor,

cursor = mp_Senfry;

for (i=0;i<=n;it++)

cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type=—CONDS_NODE);

retum *(cursor->mp_CondsArmay);
}

//Array de CAttribution
void CLinkedList:: AddAttribution{CAttribution AttributionAsrg)
i
CNode* NewNode;
CNode* cursor,
CAttribution* NewAlttribution;
NewAttribution = new CAdttribution;
*(NewAttribution)=AttributionArg;
cursor = mp_Senfry;
while (cursor->mp_NextNode!l=NULL})
cursor = cursor->mp_NexiNode;
m_ni;
NewNode = new CNode(ATTRI_NODE),
cursor->mp_NextNode = NewNode;
NewNode->mp_AttribArray = NewAtiribution;
}

CAttribution CLinkedList::GetAttribution At{int)
{
ASSERT (n>=0);
ASSERT (n<m_n);
short I,
CNode* cursor;
cursor = mp_Sentry;
for (I=0;1<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type==ATTRI_NODE),

return *(cursor->mp_AttribArray);
}

CAttribution& CLinkedList;: AttributionElementAt(int n)
{

ASSERT (n>=0);// Daniel

ASSERT (n<m_n),

short i;

CNode* cursor,

cursor = mp_Sentry;

for (1=0;i<=n;i++)

cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type==ATTRI_NODE),

return *(cursor->mp_AttribAmay),
¥

HArray de Integer
void CLinkedList::AddInteger{short IntegerArg)
{
CNode* NewNode;
CNode* cursor;
short* Newlnteger;
NewInteger = new short;
*(NewInteger)=IntegerArg;
cursor = mp_Sentry;
while {cursor->mp_NextNode!=NULL}

-163 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

cursor = cursor->mp_NextNode;
m_n++;
NewNode = new CNode(INT NOGDE),
cursor->mp_NextNode = NewNode,
NewNode->mp_IntAmay = NewlInteger,

}
short CLinkedList::GetIntegerAt(int i)
{
ASSERT (n>=0);
ASSERT (n<m _n);
short i;
CNode* cursor;

cursor =mp_Sentry;
for (i=0;i<=n;i+H)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type==INT_NODE);

return. *(cursor->mp_IntArray);
H

short& CLinkedList;: IntegerElementAi(int n)
{
ASSERT (n>=0),// Daniel
ASSERT (n<m _ny,
short 1;
CNode* cursor;
cursor = mp_Sentry,
for (i=0;t<=n;i++)
cursor = cursor->mp_NextNode;

ASSERT(cursor->m_type==INT_NODE),

return *(cursor->mp_IntArray);
}

/Array de CAttribArmay
void CLinkedList:: AddAttribArray(CAttrbnArray Arg)
{
CNode* NewNode;
CNode* cursor;
CAtrbnAtray* NewAray,
NewArray = pew CAtirbnArray;
*(NewArray)=Arg;
cursor = mp_Sentry;
while (cursor->mp_NextMNode!=NULL)
cursor = cursor->mp_NextNode;
m_n++;
NewNode = new CNode(ATTRIARRAY NODE),
cursor->mp_NextNode = NewNode;
NewNode->mp_AtbnMatrix = NewArray;
}

CAttrbnAsray CLinkedList::GetAttribArrayAt(int n)
H
ASSERT (n>=0),
ASSERT (n<m_n);
short i;
CNode* cursor,
cursor = mp_Sentry;
for (=0,i<=n;i++)
cursor = cursor->mp_NextiNode;

ASSERT(cursor->m_type==ATTRIARRAY NODE);

retumn *(cursor->mp_AtbnMatrix);
t

CAttrbnAmay& CLinkedList: AttribArcayElementAt(int i)

ASSERT (n>=0),// Daniel

-164 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

ASSERT (n<m_m);
short i;
CNode* cursor;
cursor = mp_Sentry;
for (i=0;i<=n;i++)
cursor = cursor->mp_NextNode,

ASSERT{cursor->m_type=—ATTRIARRAY NODE),

reture *(cursor->mp_AtbnMatrix);
}

Files Wordsarray.h and Wordsarray.cpp - String arrays with copy constructor

CString Array Extension Definition

/ Last Modified : 20/07/98

// Programmed by : Daniel M. S. Ferreira
/f Modified by : Marco A. A, Silva

clags CWords Array: public CStringArray
{

public;
CWordsArray();
~CWordsArray();
CWordsArray(const CWordsArmray& SrcArray);
CWordsAmay& operator=(const CWordsArray& SrcArray),
b

/ CString Array Extension Implementation
/ Last Modified : 20/07/38

/f Programmed by : Daniel M. S. Ferreira
Modified by : Marco A. A. Silva

#include "stdafic.h"
#include "wordsarray.h"

CWordsArray:: CWordsArray()

{
H

CWordsArmray:: ~CWordsArray()
{
long MySize=GetUpperBound(),
for (long index=MySize;index>0;index--)

{
RemoveAt(index),

H
}
CWords Amay::CWordsAmay(const CWordsArray& SrcAmay)

ASSERT(GetUpperBound()==-1),
for (long index=0;index<SrcArray.GetSize();index++)

1
Add(SreArray.GetAt(index));
¥

}

CWordsArmay& CWordsArray: :operator=(const CWordsArray& SreArray)
{

long MySize=GetUpperBound(),

for (fong index=MySize;index>0;index--)
éemoveAt(index);

for (index=(});index<SrcArray.GetSize();index+l-)
idd(SrcArray.GetAt(index));

return *this;

- 165 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producie

B - Elementos Estruturais do E-MFG

Files Mark.h and Marl.cpp - E-MFG Marks

H marks.h - eMFG marks definition:

/f version:2.0

Definition Date; 11/12/97

/ Last Modified: 13/07/98

/f Programed by: Danie] M. 8. Ferreira

/ Last modified by: Daniel M. S. Ferreira

/f special edition for the beta version
/f Objetivos: Definir a estrutura de dados para a marcagéo do grafo
OBS: CMarkArmy e CMarkAtiribArray estéo definidas no arquivo objarray.h

olass CMark : public CObject

{

private:

elass CGraph* mp_COwner;

class CMarkAttribArray* mp_MarkAtributesArray;// Array of Mark Atributes
BOOL m_CompositeMark;// Flag para marcas compostas
class CMarkAmay* mp_MarksList; // Array of Marks
long m_MarkiD; // Identificagfo da marca dentro do vetor de marcas
BOOL m_WasExploded, // Flag de decomposigio de marcas

publie:
/f Construction & Destrustion:
CMark();
~CMark(),

{/ Build Functions:
void Create(class CGraph* MyGraph,class CMarkAttribArray* p_MyMarkAtribArray, long My},

/f Data Management:

elass CMarkAttribute GetAtnb(C String CAtnibLabel),

class CMarkAttribute GetAtrib{long AtribIndex);

class CMarkArray* ExplodeComposite(); // retuins an array of Marks

class CMarkAtray* GetCompositeMarks(); // returns a reference to the composite mark array

// Functions to initialize the mark attribute
BOOL SetAtrib(CString MyLabel, CString MyTextAtrib),
BOOL SetAtrib(CString MyLabel, long MyIntegerAtiil);
BOOL SetAtrib(long Mylndex, long MyAtrib);
BOOL SetAtrib{iong MyIndex, CString MyTextAtrib);

{f Mark ID Functions (not used)}
long GetID();
void SetD{long MyID);

Composite Mark Manipulation (composite marks have an irtternal mark vector)
void AddMark(CMark MyMark);
votd RemoveMark(long Arraylndex),

// Graph Dynamics Mark Functions
CMark MergeMark(CMark SreMark);
void SetAHAttributesToNull();

void SetAttribToNull(long MyIndex);
void ResetComposition();

BOOL IsComposite();

/f Dump function
void GetDump(class CWordsArray* pLine),

Hseriahizacio

DECLARE_SERIAL (CMark);
virtual void Serialize(CArchive& ar),
#

- 166 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producéo

/f Copy Constructor and Equal Operator
CMark(const CMark& SrcMark),
const CMark& operator =(const CMark& SrcMark);
void operator =(Chark* SrcMark),

|

/f marks.cpp CMark class implementation
i version:2.0

/f Definition Date: 11/12/97

/f Last Modified: 18/07/98

{/ Programed by: Daniel M. 8. Ferreira

#/ Last modified by: Daniel M. S. Ferreira

{/ Objetivos: Implementar a estrutura de dados para a marcagfio do grafo

#include "stdafx.h" /f standard windows aplication
#include "elements.h” //EMFEG Standard Elements

#define MARKS_VERSION 1
CMark::CMark()

{

mp_Owner=NULL,;
mp_MarkAtributesArmay = NULL,
m_CompositeMark = FALSE;
mp_MarksList = NULL,
m_MarkID = -1;
m_WasExploded = FALSE:

}

CMark::~CMark()

{
if (mp_MarkAtributesArray = NULL)

delete mp_MarkAtributesAray;
mp_MarkAtributesArray = NULL;

H
if (mp_MarksList!=NULL)
{

defete mp_MarksList;
mp_Marks] st == NULL;
!

/{ Build Functions:
void CMark::Create{class CGraph* MyGraph, class CMarkAstribArray* p_MyMark AtribAsray, long MyTD)

{

mp_Owner= MyGraph;
ASSERT(p_MyMarkAtribArray!=NULL}),
ASSERTMyID>=0),

mp_MarkAtributes Array = new CMarkAttribArray;
for (fong index=0;index<(p_MyMark AtribAmray->GetSize());index++)

{
mp_MarkAtributes Array->Add(p_MyMarkAtribArray->GetAt(index));

}
m_CompositeMark = FALSE;
mp_MarksList = NULL,
m_MarkID = MyID>,
m_WasExploded = FALSE;

}

#/ Data Management:
class CMarkAttribute CMark: :GetAtrib(CSiring CAtribLabel)
{
long RegIndex = -1,
for (int index = 0; index<mp_MarkAtributesArray->GetSize(); index++)
{

-167 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produg¢iio

if ((mp_MarkAtributes Array->GetAt(index)). GetLabelj==CAtribLabel)

{
RegIndex=index;
break;

}

H
ASSERT(Reqindex>=0);

return (mp_MarkAtributes Array->GetAt(ReqIndex)),
}

class CMarkAttribute CMark::GetAtrib{long AtribIndex)

{
ASSERT(AmibIndex>=0&&AtribIndex<mp_MarkAtributesArray->GetSize()),
return (mp_MarkAtributes Array->GetAt(AtribIndex));

void CMark::GetDump(CWordsAmray* pLine)

{
for (long index=0;index<mp_MarkAtributes Array->GetSize();index-++)

{
pLine->Add(mp MarkAtributes Array->ElementAt(index). GetDump());
if (IsComposite(})
{

pLine->Add("Composition:"),
for (long i=0;i<mp MarksList->GetSize();1++)

{
CString MID,
MID.Format("%ld" i),
MID ="M" + MID;
pLine->Add(MID),
mp_MarksList->GetAt(D).GetDump(p.ine);
}
H
}

class CMarkArray* CMark: ExplodeComposite()

{
// returns an array of Marks

return mp _MarksList;
}

class CMarkArmay* CMark::GetCompositeMarks()

{
retums & reference to the composite mark array

return mp_MarksList;
}

BOOL CMark::SetAtrib(long MylIndex, CSiring MyTextAirib)
{

(mp_MarkAtributes Array->ElementAt(MyIndex)). SetAtrib(MyTextAtrib);

return TRUE,
}

BOOL CMark::SetAtrib(long Mylndex, long MyAtrib)
{

(mp_MarkAtributesArray->ElernentAt(MyIndex)). SetAtrib(MiyAtrib};

return TRUE;
}

BOOL CMark::SetAtrib(CString MyLabe!, CString My TextAdtrib)
{
ASSERT(GetAtrib(MyLabel).GetType()==TEXT_ATRIB);

if ({(GetAtrib(MyLabel).GetType)==TEXT_ATRIB))
retum FALSE;

-168 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgie

long Reqindex = -1,
for (int index = 0; index<mp_MarkAtribulesArray->GetSize(); index++)

{
if ((mp_MarkAtributesArray->GetAt(index)). GetLabel)==MyLabel)

{
ReqIndex=index;
break;

}

}
ASSERTRegIndex>=0y;
{mp_MarkAtributesArray->ElementAt(Reqlndex)). SetAwib(MyTextAtrib);

return TRUE;
H

BOOL CMark::SetAtrib(CString MyLabel, long MyIntegerAtrib)

{

ASSERT(GetAtrib{(MyLabel).GetType(—=INTEGER_ATRIB),

if ({{GetAtrb(MyLabel). GetType()—INTEGER_ATRIB))
retun FALSE,

long RegIndex = -1;
for (int index = Q; index<mp MarkAtributesArray->GetSize(); index+)

{
if ((mp_MarkAtributes Array->GetAt(index)).GetLabelQ==MyLabel}
{
ReqgIndex=index;
break;
}

ASSERT(Rqundex>=3));

(mp_MarkAtributes Aray->ElementAt(Reqindex)). SetAtrib(MyInteger Atrib);
return TRUE;

}

long CMark::GetID()
{

return m_MarkID;

}

void CMark::SetiD(long MyID)

{
m_MarkID = MyID,
}

void CMark:: AddMark(CMark MyMark)

{
if (m_CompositeMark = FALSE)
{
m_CempositeMark=TRUE;
ASSERT(mp_ MarksList==NULL},
mp_MarksList = new CMarkArray;
mp_MarksList->Add(MyMark);

else

{
mp_MarksList->Add(MyMark),
3

}

void CMark::RemoveMark(long Arraylndex)

{
ASSERT(FALSE);
i mp_MarksList->RemoveAt(ArrayIndex),
}

- 169 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Ifserializagfio

IMPLEMENT_SERIAL (CMark CObject MARKS VERSION);
void CMark::Serialize(CArchive&: ar)

{
ASSERT(FALSE);
}

i
/Il Construtor de Copia e operador igual:

CMark::CMark(const CMarké: SreMark)

{
mp_Owner= SreMark.mp Owner,
if ((SrcMark.mp_MarkAtributesArray)l=NULL)

1
mp MarkAtributesAmay = new CMarkAtiribAriay,
for (long index=0;index<((SrcMark.mp_MarkAtributesArray)->GetSize());index++)

{
mp_MarkAtributes Array->Add{SrcMark mp_MarkAtributes Array->GetAt(index)),
H

¥

{
mp_MarkAtributes Array=NULL;
}

m_CompositeMark = SreMark.m_CompositeMark,

else

if (SreMark.mp_MarksList!=NULL)
{

mp_MarksList = new CMarkArray,
for (long index=0;index<((SrcMark.mp_MarksList)->GetSize());index+-+)

mp_MarksList->Add(SreMark mp_MarksList->GetAt(index);
}
H

{
mp MarksList=NULL,;

}

m_MarkID = SrcMark.m_MarkID;//Warning: New Marks must have a different ID
m_WasExploded = SreMark.m_WasExploded;
}

const CMark& CMark::operator =(const CMark& SreMark)

else

{
mp_Owner= SreMark.mp_Owner;
if (mp_MarkAtributesArray = NULL)
{
delete mp MarkAtributesArray,
mp_MarkAtributes Array = NULL;

}
if ((SreMark.mp_Mark Atributes Array)I=NULL)

{

mp_MarkAtributesArray = new CMarkAitribArray;

for (long index=0;index<((SrcMark.mp_MarkAtributes Array)->GetSize());index-++)
{

mp_MarkAtributesArray->Add(SrcMark.mp_MarkAtributes Array->GetAt(index));
}
}

{
mp_MarkAtributes Array=NULL;

H

m_CompositeMark = SrcMark. m_CompositeMark;
if (mp MarksList!=NULL)
{

else

- 170 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgfo

delete mp_MarksList;
mp_MarksList = NULL;

H
if (SreMark.mp_MarksList!=NULL)
i
mp MarksList = new CMarkAmay;
for (Ieng index=0;index<((SrcMark mp Marksl ist)->GetSize());index++)

{
mp_MarksList->Add(SreMark.mp_MarksList->GetAt(index));

H

{
mp_MarksList=NULL;

}

m_MarkID} = SreMark. m_MarkIDy;,//Waming: New Marks must have a different 1D
m_WasExploded = SreMark.m_WasExploded,
return *this;

H

CMark CMark::MergeMark(CMark SrcMark}

{

i Merge Atributes:

for Jong index=0;index<((SrcMark.mp MarkAtributes Array)->GetSize());index++)
{

else

switch ((SreMark.mp_Mark Atributes Array)->GetAt(index). Get Type())
{
case INTEGER_ATRIB:

{
if ((SreMark.mp_Mark Atributes Array)-
>GetAt(index).GetIntegerAtrib(}!=0)

{
mp_MarkAtributesArray-
>ElementAt(index).SetAtrib((SrcMark.mp_MarkAtributes Array)->Getat(index). GetInteger Atrib());

}
break;
}
case TEXT_ATRIB:

i
if {((SreMark mp_MarkAtributes Atray)-
>CGetAt(index). GetTextAtrib(Q)!="")

{
mp_MarkAtributesArray-
>ElementAt(index).SetAtrib{(SrcMark.mp_MarkAtributes Array)->GetAt(index). GetTextAtrib();

}
break;
}
¥
}
{{ Merge Composition
if (SreMark. GetCompositeMarksQI=INULL)
{

for (long index=0;index<SrcMark.GetCompositeMarks()->GetSize(); index++)

{
AddMark(SreMark. GetCompositeMarks(->GetAt(index));

}

return *this;

}
void CMark::SetAlAttributes ToNutt()

{
ASSERT(mp_MearkAtributes Array!=NULLY),
for (long index=0;index<mp MarkAtributesArray->GetSize();index++)

{
mp_MarkAtributes Array->ElementAt(index). SetTolNull(),
}

-171-

Controlader E-MFG para Sistemas Integrados e Flexiveis de Produciio

void CMark:: SetAttribToNull(long Mylndex)

{

ASSERT(mp_MarkAtributesArray!=NULL),
ASSERT(mp_MarkAtributes Array->GetSize()>Mylndex),
ASSERT(Myindex>=0);

mp_MarkAtributes Array->ElementAtQviyIndex). SetTolNull();

}

void CMark::ResetComposition()
{

m_CompositeMark = FALSE;

if (mp_MarksList!=NULL})

{
delete mp_MarksList,
mp_MarksList = NULL;
}

m_WasExploded = FALSE,

}

BOOL CMark::IsComposite()
{
return m_CompositeMark;
}

Files Boxes.h and Boxes.cpp - E-MFG Boxes

// boxes.h eMFG Boxes Definition:

i

version;2,0

Definition Date: 11/12/97

{f Last Modified: 08/07/98

/f Programed by: Daniel M. 8. Ferzreira

/f Last modified by: Daniel M, S. Ferreira

/ Objetivos: Definir a estrutura de dados dos elementos de estado
#/ (boxes) do grafo. Estéio previstos boxes comuns, temporizados, capacidade, acumuladores (packing), dispersores(unpacking) e
transformadores

class CBox : public CObject
{
protected:
¢lass CGraph* mp_Owner,
// Box Type:
short m_Type;
// Box Label:
CString m_Label;
/ Number of Origin and Destiny Arcs:
long m_NumOriginAres;
long m_NumDestiniyArcs;
/ Array of Indexes to Origin Arcs:
long* mp_OriginArcIndex;,
/ Array of Indexes to Destiny Arcs:
long* mp_DestinyArcIndex;
/f This Box Mark:
class CMark m_BoxMark;
/f Flag: Do I have any mark inside this box?
BOOL m_HasAnyMark,

H#Oid CTransformatorBox Data Members:
protected:
/ Transformator Engine array of atribuitions:

class CCondArray* mp_ConditionsArray;
class CAtbnMatrix* mp_ThenAttributions;
class CAtbnMatrix* mp ElseAttributions;

/fOld CCapacity Box Data Members:
protected:
// Box Capacity:
long m_Capacity;
/ Box Array of Marks

-172 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

class CMarkAmay* mp_BoxMarkAmay,

BOOL m_Deadlock;
/ Picking Ordet Preference:
BOOL m_Fifo;
#{ Temporized Boxes Data Mambers:

CTime m_StartTime;

long m_TimeCte;

long m_TimeCount;

BOOL m_JsTimerRunning;
BOOL m_HasTimerRunned,

public:
/f Construction & Destruction:
CBox(),
~CBox(),

{/ CBox Build Functions:
void Create(CCraph* MyGraph, short MyType, CString MyLabel long MyMumOriginAses, long MyMumDestiny Ares,
long* MyOriginindex, long* MyDestinyIndex);

#CBox Data Management:
virtual void AddMark(class CMark MyMark),
virtual class CMark RemoveMark();
class CMarkAttribute GetMarkAtrib(CString AtribLabel);
class CMarkAdttribute GetMarkAtrib(long AtribIndex);
void SetMarkAtribute(CString AtribLabel, CString AtribValue),
void SetMarkAtribute(CString AtribLabel, long AtribValue),
void SetMarkAtribute(CMarkAttribute RefAtrib);
void SetMarkAtribute(long Index, long AtribValue),
void SetMarkAtribute(long Index, CString AtribValue},

CString GetLabel();
short GetType(),

BOOL HasMark();

long GetNumOriginArcs(),

long GetNumDestinyAres(),

long* GetOriginArcsIndexList();

long* GetDestinyArcsIndexList();

long* GetOriginTransitionsIndexList(class CArcAmmay* p_ArcsArray);

long* GetDestinyTransitionsIndexList(class CArcAmay* p_ArcsArray,class COnteArray* p MyGateAsray, class
CBoxArmay* p_ MyBoxArmray),

e L T T
/{ Old CTransformatorBox Function Members:
public:
/ Adds a if then else statement
void AddBlock(class CCondArray MyConditions, class CAtbnMatrix MyThenAtbn, class CAtbnMatrix MyElseAtbn);

protected:
void RunTransformationEngine(); // Executes the if-then-else command (called by AddMark)

Y T e
/1 O3d CCapacityBox Packing and Unpacking Box Function Members: // this constructor will have to be used for the Unpacking
Box
public:

void Create(CGraph* p_MyGraph,short MyType, CString MyLabel, long MyNumOriginArcs, long MyNumDestinyArcs, long*
MyOriginIndex, long* MyDestinyIndex, long MyCapacity, BOOL IsFifo), #/ This is THE constructor, please keep other fiunction as
reference for a while

long GetNurnMarks();
BOOL IsFull(y,
BCOOL HesNorMoreMarks(long NumMarks);

BOQL IsAReadyPreCondition();
BOOL IsAReadyPosCondition();

void ResetDeadlock();

-173-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

BOOL IsDeadlock();

/f Temporized Box Functions (not implemented):
public:
void SetBoxAsTemporized(long MyTimeCte),// only for Common Box
void StartTimer(CTime MyTime),
void UpdateTimer(CTime MyTime);
BOOL IsTimeCounting(};
veid ResetTimer();
BOOL HasTimerRunned();

Copy Constructor and Operator equal:

public:
CBox(const CBox& BoxS3rc),
CBoxé operator = (CBox& BoxSrc),
DECLARE_SERIAL (CBox),
virtual void Serialize(CArchive& ar),
void GetDump(class CLinesArray* pTable);
protected:

void ResetMarkFlag(),
L

// boxes.cpp eMFG Boxes Implementation:

f#

f version:2.0

{f Definition Date: 11/12/97

/f Daniel M. 8. Ferreira & Marco A. A, Silva

/ Last Modified: 08/07/98

/f Programed by: Daniel M. 8. Ferreira

/ Last modified by: Daniel M. 8. Ferreira

i

/f Objetivos: Implementar a estrutura de dados dos elementos de estado
/1 (boxes) do grafo. Estiio previstos boxes comuns, temporizados, capacidade, acumuladores (packing), dispersores{unpacking) e
transformadores

#include "stdafx.h" fistandard windows aplication
#include "elements.h" HE-MFG elements

T e
// class CBox : public CObject

// Construction & Destruction:
CBox::CBox()

{

mp_Owner=NULL;

/f Box Type:
m_Type = COMMON_BOX;
// Box Label:
m_Labcl='"‘;
/ Number of Origin and Destiny Arcs:
m_NumOriginArcs=0;
m_NumDestinyArcs=0;
/i Array of Indexes to Origin Arcs:
mp_CriginArcIndex=NULL;
/f Amray of Indexes to Destiny Arcs:
mp_DestinyArcIndex=NULL;
Flag: Do I have any mark inside this box?
m HasAnyMark=FALSE,

#01d CCapacity Box Data Members:
/1 Box Capacity:
m_Capacity=1;
// Box Array of Marks
mp_BoxMarkArray=NULL;
/f Picking Order Preference:
m_Fifo=FALSE;

-174 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

m_Deadlock = FALSE;

#/ Timer:
CTime m_StextTime,

m TimeCte =0,
m_TimeCount = 0;
rm_lsTimerRunning = FALSE;
m_HasTimerRunned = FALSE;

mp_ConditionsArray = NULL;

mp_ThenAttributions = NULL,

mp_ElseAttributions = NULL;
}

CBox::~CBox()

{
if (mp_Origin ArcIndex!=NULL}

{

delete [} mp_OriginArcIndex;
mp_OriginArcIndex=NULL;
t

if (mp_DestinyAreIndex!=NULL)

delete [mp_DestinyArcIndex;
mp_DestinyArcIndex=NULL,;
H

if (mp_BoxMarkArray!=NULL)
{
delete mp BoxMarkArray,
mp_BoxMarkArray=NULL;
H

if {mp_ConditionsArray!=NULL)
{
delete mp_Conditions Array;
mp_ConditionsArray = NULL;
}

if (mp_ThenAttributions!=NULL)
{
delete mp_Then Attributions;
mp_ThenAttributions = NULL:
H

if (mp_ElseAttributions!=NULL)
{
delete mp_ElseAttributions;
mp_ElseAttributions = NULL;
}
h

/f CBox Build Functions:

void CBox::Create(CGraph* MyGraph, short MyType, CString MyLabel,long MyNumOriginArcs, long
MyNumDestinyArcs, long* MyOriginIndex, long* MyDestinyndex)

{

ASSERT(MyGraph!=NULL);

mp_Owner = MyGraph;
ASSERT(MyType==COMMON_BOX|MyType—=TRANSFORMATOR_BOX);
// Box Type:
m_Type =MyType;
// Box Label:
m_Label=MyLabel;
/f Number of Origin and Destiny Arcs:
m_NumOriginArcs=MyNumOriginArcs,
m_NumDestinyArcs=MyNumDestinyAres;
/f Array of Indexes to Origin Arcs:
if ({m_NumOrigin Ares>0)& & (MyOriginIndex|=NULL))

{

~-175-

Contrelador E-MFG para Sistemas Integrades ¢ Flexiveis de Producio

mp_OriginArcIndex=new long[m NumOriginArcs];
for (long index=0;index<m_NumOriginArcs.index++)

{
mp_OriginArcIndex[index]=MyCriginIndexindex];
¥

else
{
mp_OriginArcndex=NULIL,;

}

/! Arrey of Indexes to Destiny Ares:

if ((to_NumDestinyArcs>0)&&(MyDestinyIndex!=NULL))
{

mp_DestinyArcIndex=new long(m_NumDestinyArcs];

for (long index=0;index<m_NumDestinyArcs;index++)
{
mp_DestinyAreIndex]index}=MyDestinyIndexfindex),

}

{
mp_DestinyArcIndex=NULL;

else

1
// Flag: Do I have any mark inside this box?
m_HasAnyMark=FALSE;

HOMd CTransformatorBox Data Members:

/ Transformator Engine array of atribuitions:
i mp_Attributiondrray=NULL,
i m_NumAtiributions = 0;

#Old CCapaoity Box Data Members:
/1 Box Capacity:
m_Capacity=1;

// Box Array of Marks
mp_BoxMarkArray=NUJLL,
/f Picking, Order Preference:
m_Fifo=FALSE;

mp_ConditionsArray = NULL,

mp_ThenAttributions = NULL,

mp_ElseAttributions = NULL,
H

/fCBox Data Management:
void CBox.:AddMark(class CMark MyMark)

{
switch (m_Type)

{
case COMMON_BOX:
i
ASSERT(m_HasAnyMark==FALSE);
m_BoxMark=MyMark;
m_HasAnyMark=TRUE;
break;
}
case TEMP_BOX:
{
ASSERT(m_HasAnyMark==FALSE);
m_BoxMark=MyMark,
m_HasAnyMark=TRUE,
m_IsTimerRunning = TRUE,
break;

H
case TRANSFORMATOR._BOX:

{

ASSERT(m_HasAnyMark—FALSE),
m_BoxMark=MyMark;

m_HasAnyMark=TRUE,
RunTransformationEngine();

break;

-176 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

case CAPACITY_BOX:

{
ASSERT(np_BoxMarkArray!=NULL);/tests for correct initialization
ASSERT((m HasAnyMark==TRUE&&mp_BoxMarkArray->GetSize()>0)]|
(m_HasAnyMark—FALSE&&mp_BoxMarkArmay->GetSize(}==0));/ftest for correct flag use
ASSERT(mp_BoxMark Array->GetSize()<m_Capacity)./Aest for correct pos_condition flag and capacity initialization
mp_BoxMarkArray->Add(MyMark),
m_HasAnyMark=TRUE;
break;

H
case PACKING_BOX:

{

ASSERT(mp_BoxMarkArray!=NULL);//tests for correct initialization

ASSERT((m_HasAnyMark==TRUE&&mp_BoxMarkAmay->GetSize(>0)|

(m_HasAnyMark==FALSE&&mp BoxMarkArray->GetSize(Q==0));/ftest for correct flag use

ASSERT{mp_BoxMarkArray->GetSize(Qy<m_Capacity)./!test for correct pos_condition flag and capacity initialization
mp_BoxMarkArmay->Add(MyMark);

ASSERT(mp_BoxMarkArray->GetSize(y<=m_Capacity);
m_HasAnyMark=TRUE;

break,

}
case UNPACKING_BOX:

{

ASSERT(mp_BoxMarkArmay!=NULL);/ftests for correct initielization

ASSERT({(m_HasAnyMark==FALSE&&mp BoxMarkArray->GetSize()==0));/test for correct flag use
ASSERT(mp_BoxMarkArmay->GetSize(<m_Capacity}/ftest for correct pos_condition flag and capacity initielization
if (MyMark. IsComposite())

{
ASSERT (MyMark . GetCompositeMarks(->GetSize(==m Capacity};
if (MyMark. GetCompositeMarks()->GetSize()==m_Capacity)

{
for (long index = O;index<m_Capacity;index++)

{
mp_BoxMarkArray->Add(MyMark GetCompoesiteMarks()->GetAt(index});
h

}

else

{
/f The mark and the unpacking box are not compatible this should cause a deadiock
m_Deadlock = TRUE;
ASSERT(FALSE),
}
}

else
{
for (long index = 0;index<m_Capacity;indext+)

{
mp_BoxMarkArmay->Add(MyMark);

m_HasAnyMark=TRUE;

class CMark CBox::RemoveMark()
{
if (m_Type==COMMON_BOX|lm_Type==TRANSFORMATOR_BOX)

{
ASSERT(m HasAnyMark—TRUE),
m_HasAnyMark=FALSE;

}
if mn_Type=—TEMP_BOX)
{
ASSERT(m_HasAnyMark=TRUE),
ASSERT(m_HasTimerRunned),
ResetTimer();
m_HasAnyMark=FALSE;
¥

if (m_Type==CAPACITY BOX|im_Type—UNPACKING_BOX)

-177-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

{
ASSERT(mp_BoxMarkArray->GetSize()>0);
if (m_Fifo==TRUE)

{
m_BoxiMark=mp_BoxiMarkArmay->GetAt(0);/
mp_BoxMark Array->RemoveMark At(0);

¥

clse

{
m_BoxMark=mp_BoxMarkArray->GetAt({mp_BoxMarkAmay->GetSize()-1)),
mp_BoxMarkArmay->RemoveMarkAt((mp_BoxMarkArray->GetSize()-1));

H
if (mp_BoxMarkArray->GetSize()>0)

{
m_HasAnyMark=TRUE,
3

else

{
m_HasAnyMark=FALSE;
}

!
if (m_Type=~PACKING_BOX)

{
ASSERT(mp_BoxMarkArray->GetSize)—m_Capacity),
if {m_Fifo=—TRUE)

i

m_BoxMark=mp BoxMarkArray->GetAt(0),//
m_BoxMark SetAllAttributesToNull();
for (long i=0;i<m_Capacity,i++)

f
m_BoxMark AddMark(mp_BoxMarkAmay->GetA0));
mp_BoxMarkArray->RemoveMarkAt{0);
H
i
else

{
m_BoxMark=mp_BoxMarkArmay->GetAt(0);/
m_BoxMark. SetAll Attributes ToNull(),
for (long i=m _Capacity-1;i>=0;i--}

t
m_BoxMark AddMark{mp_BoxMarkArray->GetAt(i));
mp BoxMarkArray->RemoveMarkAt(1);
¥
}
ASSERT(mp_BoxMarkArray->GetSize(}==0);
m_HasAnyMark=FALSE,

}
CMerk ReturnValue = m_BoxMark;
m_BoxMark.SetAllAnributes ToNull();
m_BoxMark ResetComposition();
return ReturnValue;

H
class CMarkAttribute CBox::GetMark Atdb(CString AtribLabel)
/ATHIS F U{NCTION IS USED WHEN THE ATTRIBUTE NUMBER IS NOT KNOWN */
CMarkAttribute ReturmValue;
if (m_Yias AnyMark==TRUE)
iff(m_'l‘ype=CAPACITY_BOXI \m_Type==PACKING_BOX||m_Type==UNPACKING BOX)
1:{f (mp_BoxMarkArray->GetSize()>0)

iff {m_Fifo==TRUE)

{
RemurnValue=(mp_BoxMark Array-

}
{

>GetAl(0)).GetAtrib(AtribLabel);

else

-178 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

RetumValue=(mp BoxMarkArray-

H

>GetAt((mp_BoxMarkArray->GetSize()-1))). GetAtrib(AtribLabel);

}
}

{
ReturnValue=m_BoxMark GetAtrib(AtribLabel),

}

else

else
{
BOOL AtriblsValid = FALSE;
for (fong index={;index<mp_Owner->GetAttribTernplates()->GetSize();index-++)
{
if (AtribLabel=mp_Owner->GetAttribTemplates()->GetAt(index).GetLabel())
{
RetumValue = mp_Owner->GetAttribTemplates(}-
>(FetAt(index),
AtriblsValid = TRUE;
break;
}
i
ASSERT(AtriblsValid),
}
return RetumValue;

}

class CMarkAttribute CBox::GetMark Atrib(fong AtribIndex)
{
CMarkAttribute ReturnValue;
if (m_HasAnyMark==TRUE)

{
if (m_Type==CAPACITY_BOX||m_Type==PACKING_BOX|jm_Type==UNPACKING_BOX)

{
if (mp BoxMarkAmay->GetSize()>()

{
if (m_Fifo==TRUE}
{
RetumnValue=(mp_BoxMarkArray-
>GetAt(0)).GetAtrib(AtribIndex),
¥

{
ReturaValve=(mp_BoxMark Array-

}

else

>GetAt((mp_RoxMarkArray->GetSize()-1))). GetAtrib(Atribindex);

}

else
{
ReturnValue = mp_Owner->GetAttribTemplates()->GetAt(AtribIndex),
H
}

else

{

H
}

{
ReturnValoe = mp_Owmer->GetAttribTemplates()->GetAt(Atribindex),

}
retum ReturnValue;

}

void CBox::SetMarkAtribute(CString AtribLabel, CString AtribValue)
{

if (m_HasAnyMaik==TRUE)

{
if (m_Type=CAPACITY_BOX|lm_Type=—=PACKING_BOXlim_Type==UNPACKING_BOX)

ReturnValue=m_BoxMark.GetAtrib(AtribIndex),

else

-179-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

{
if (tap_BoxMarkArray->GetSize(}>0)

{
if (m_Fifo=TRUE)
{
myp_BoxMarkArray-
>Element At(0). SetAtrib(Atriblabel AtribValue);

}

else

{
mp_BoxMarkArray-
>ElementAt({mp_BoxMarkAnay->GetSize()-1)). SetAtrib(AtribLabel AtribValue);;
h
}
else

{
ASSERT(FALSEY, // should never get here!
H

}

else

{

}
}

m_BoxMark. SefAtrib(AtribLabel, AtribValue);

else

{
ASSERT{FALSE); // should never get here!
}

}

void CBox::SetMarkAtribute(CString AtribLabel, long AtrtbValue)
{

if (m_HasAnyMark—TRUE)

{

if (m_Type==CAPACITY_BOX|jm_Type==PACKING_BOX]lm_Type==UNPACKING BOX)
{
if (mp_BoxMarkArray->GetSize()>0)

if {m_Fifo==TRUE)
{
mp_BoxMarkArray-
>ElementAt(0).SetAtrib(AtribLabel AtribValue);

¥

else

i
mp_BoxMarkArmay-
>ElementAt((mp_BoxMarkArray->GetSize()-1)). SetAtrib(AtribLabel AtribValue);;
}
¥
else

{
ASSERT(FALSE); // should never get here!
}

}

else

i

}
!

m_BoxMark SetAtrib{AfribLabel AtribValue),

else
{
ASSERT(FALSE),/ should never get here!
¥
}
void CBox::SetMarkAtribute(long Index, long AtribValue)
{

if (m_HasAnyMark==TRUE)

{
if (m_Type==CAPACITY_BOX|im_Type==PACKING_BOX|im_Type=~UNPACKING_BOX)

- 180 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

{
if (mp_BoxMarkArray->GetSize()>{)

{
if (m_Fifo==TRUE)
{
mp_BoxMarkArray-
>ElementAt(0). SetAtrib{Index, AtribValue),
}

else

{
mp_BoxMarkAsray-
>ElementAt((mp_BoxMarkAmay->GetSize()-1)).3etAtrib(Index, AtribValue);;
}
H

else

{
ASSERT(FALSE):// should never get here}
}

}

else

{

H
}

{
ASSERT(FALSE);// should never get here!

i

m_BoxMark. SetAtrib{Index,AtribValue),

else

}
void CBox::SetMarkAtribute(long Index, CString AtribValue)
{
if (m_HasAnyMark==TRUE)
{

if (m_Type=—CAPACITY_BOX|Im_Type—=PACKING BOX|m_Type==UNPACKING_BOX)
{
if (mp_BoxMarkArray->GetSize()>0)

{
if (m_Fifo==TRUE)
{
mp_BoxMarkAray-
>ElementAt(0).SetAtrib(Index, AtribValue),

}

{
mp_BoxMarkArray-
>ElementAt{(mnp_BoxMarkArray->GetSize()-1)). SetAtrib(Index, AtribValue);;

H

else

H

else

{
ASSERT(FALSE)/f should never get here!
}

}

else

1

}
}

m_BoxMark. SetAtrib(Index, AtribValue);

clse
{
ASSERT(FALSE);/ should never get here!

}
H

void CBox::SetMarkAtribute{CMarkAttribute RefAtrib)
{
switch (RefAtrib.GetType())

{

case TEXT ATRIB:

{
SetMarkAtribute(RefAtrib.Getlabel(),RefAtrib. GetText Atrib());

-181-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

break;
}
case INTEGER_ATRIB:

{
SetMarkAtribute(RefAfrib.GetLabel(),RefAtrib.GetlntegerAtrib());
break;

}

}
CString CBox::GetLabel()

{
return. ma_Label;
}

void CBox::GetDump(CLinesArray* pTable)
{

CWordsArray* pLine=NULL,
pLine = new CWordsArray;
pLine->Add(GetLabel();
switch (GetType())
{
case TRANSFORMATOR_BOX:
{
pLine->Add("TRANSFORMATOR_BOX™);
CString Dump;,
if(HasMark()
{
Dump="#Marks=1",
pLine->Add(Dump),
m_BoxMark.GetDump(pLine);
}
else
{
Dump="#Marks=0",
pLine->Add{Dump);
}
plable->Add(*pLine),
delete pLine;
pLine = NULL;
break;

!
case CAPACITY BOX:
if (m_Fifo)

{
pLine->Add("CAPACITY_ BOX(FIFO)");
}

{
pLine->Add("CAPACITY BOX(LIFO)");

}

else

CString Dump;,
if{HasMark())

t

Dump.Format("%sld",GetNumMarks(});

Dump="#Marks=" + Dump,

pLine->Add{Cumpy,

mp_BoxMarkAmay->ElementAt(0).GetDump(pLine);

pTable->Add(*pLine);

delete pLine;

pLine = NULL;

for (long index=1;index<mp_ BoxMarkAray-

>GetSize()index++)
d
pLine = new CWordsArray;
pLine->Add(™");
pLine->Add("™),
pLine->Add{"");
mp_BoxMarkArmay-
>ElementAt(index).GetDump{pLine),

pTable->Add(*pLine),

-182-

Controlader E-MFG para Sistemas Integrados e Flexiveis de Producio

delete pLine;
pLine =NULL:
}

}

{
Dump="#Marks=0",
pLine->Add(Dump);
pTlable->Add(*pLine);
delete pLine;

pLine =NULL,

¥

else

break;
}

case UNPACKING_BOX:
{
CString SCap;
SCap.Format("%sld",m_Capacity),
if (m_Fifo)

{
pLine->Add("UNPACKING_BOX(FIFQ, +SCap+")");
}

else

t

pLine->Add("UNPACKING BOX(LIFO,"+SCap+"),

}

CSinng Pump;
if(HasMark()

{

Dump.Format("%1d",GetNumMarks());

Dump="#Marks=" + Dump;

plLine->Add(Dumpy;

mp_BoxMarkArray->ElementAt(0). GetDump{pLine);

pTable->Add(*pLine);

delete pLine;

pLine =NULL;

for (long index=1;index<mp_BoxMarkArray-

>(etSize();index++)
{
pLine = new CWordsArray,
pLine->Add(™");
pLine->Add ("),
pLine->Add(""y;
mp_BoxMarkAsray-
>ElementAt(index). GetDumnp(pLine);

pTable->Add(*pLine);
delete pLine;
pLine = NULL;
}

}

{
Dump="#Marks=0",
pLine->Add(Dumpy;
pTable->Add(*pLine);
delete pLine;

pLine = NULL;

H

else

break;
H

case PACKING_BOX:
{
CString SCap;
SCap Format("%Ild",m_Capacity),
if {m_Fifo)
{
pline->Add("PACKING BOX(FIFO,"+SCap+")"),
3

- 183 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

else
{
pLine->Add("PACKING_BOX(LIFQ,"+SCap+"");
}
CString Dump;
if(HasMark())
{
Dump. Format({"%ld"GetNumMarks());
Pump="#Marks=" + Dump;
pLine->Add(Dumpy,
mp_BoxMarkArray->ElementAt(0). GetDump(pLine);
pTable->Add(*pLine),
delete pLine;
pLine = NULL;
for (long index=1;index<mp_BoxMarkArray-
>(GetSize();index++)
{
pLline = new CWordsArray,
pLine->Add(™):
pLine->Add(™Y;
pLine->Add(™Y,
mp_BoxMarkArray-
>ElementAt(index).GetDump(pLine),
pTable->Add(*pLine);
delete pLine;,
pLine =NULL;
t
}
else
{
Dump="#Marks=0";
pLine->Add(Dump);
pTable->Add(*pLine);
delete pLine;
pLine =NULL;
}
break;
}
case COMMON_BOX:
{
pLine->Add{"COMMON_BOX"),
CString Dump,
if{HasMark())
{
Dump="#Marks=1";
pLine->Add(Dump),
m_BoxMark.GetDump(pLine);
}
else
{
Dump="#Marks=0",
pLine->Add(Dump),
}
pTable->Add(*pLine);
delete pLine;
pline = NULL;
break;
case TEMP_BOX:
{
CString TCte;
TCte.Format("%ld",m_TimeCte);
pLine->Add("TEMP_BOX {"+TCte+")");
CString Dump;
if(HasMark(})
{
Dump="#Marks=1",
pLine->Add(Dumpy;
m_BoxMark.GetDump(pLine),
}
else

-184 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Preduciio

{
Dump="#Marks=0";
pLine->Add(Dumpy,

}
pTable->Add(*pLine);
delete pLine;
pLine =NULL;
break;
¥

}
ASSERT (pLine==NULL);
}

short CBox::GetType()
{

return m_Type;

¥

BOOL CBox::HasMark()

{
return m_HasAnyMark;
}

long CBox::GetNumOriginAres()

{
return m_NumOriginAres,
}

long CBox::GetNumDestinyArcs()

i
return m_NumDestinyArcs;

H

long* CBox::GetOriginArcsIndexList()

{
retumn mp_OriginArcIndex,
}

long* CBox::GetDestinyArcsIndexList()

{
return mp_DestinyArcIndex;

H

long* CBox::GetCriginTransitionsIndexList(class CArcArray* p_ArcsArray)

{
long* p_TransitionIndex=new long{GetNumOriginAres()];
for (long index=0;index<GetNumOriginArcs();index++)

{
p_TransitionIndex[index]=p_ArcsArray->GetAt(mp_OriginArcIndex[index]). GetOrigin{);

return p_Transitionfndex;
}

long* CBox::GetDestiny TransitionsindexList(class CArcAmay* p_ArcsAmay,class CGateArray® p_MyGateArray,
class CBoxAmmay* p_ MyBoxArray)
i

long* p_TransitionIndex=new long[GetNumDestinyArcs(];
for (long index=0;index<GetNumDestiny Ares();index++)

{
p_TransitionIndex[index]=(p_ArcsAmay->GetAt(mp_DestinyArcIndex(index])}.GetDestiny();

}
return p_TransitionIndex;
¥

void CBox::RunTransformationEngine()
{

for (long CondIndex = 0, CondIndex<mp_CenditionsArray->GetSize(); CondIndex-++)
{

~ 185 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producfio

WAITING FOR MARCO'S CONDITIONAL ELEMENTS DEFINITION AND THE FROPER
/#{ FUNCTIONS ON CLINKEDLIST FOR CONDITIONALS ANI ATFRIBUTIONS

if (mp_ConditionsArray->GetAt(CondIndex) Evaluate())
{
long NumTrueAttrib = mp_ThenAttributions->GetAt(CondIndex). GetSize();
for (long AttIndex = 0,AttIndex<Num TrueAttrib; AttIndes-++)
{
CAttribution Actual = mp_ThenAtiributions->Element At{CondIndex). Element At{ AttTndex),
Actual. DoAttribution(mp_QOwner->GetBoxes(),mp_Owner->GetGates(),
}
}
else
{
long NumFalseAttrib = mp_ElseAttributions->GetAt{CondIndex). GetSize();
for (long Attindex = 0;AttIndex<NumFalseAttrib; AttTndex++}
{
CAttribution Actusl = mp_ElseAttributions->ElementAt(CondIndex). ElementAt(AttIndex)::
Actual. DoAttribution(mp_Owner->GetBoxes(),mp_Owner->GetGates());
}
}
}
b

Old CCapacityBox Function Members:

void CBox::Create(CGraph *p_MyGraph,short MyType, CString MyLabel,long MyNumCriginAres, long
MyNumDestinyAres, long* MyOriginIndex, long* MyDestinyIndex, long MyCapacity, BOOL IsFifo)

{
ASSERT(MyType=CAPACITY_BOX|!MyType=PACKING_BOX||MyType=UNPACKING_BOX);
ASSERT(p_MyGraph!=NULL);
Ovwmer Graph:
mp_Cwner = p_MyGraph;
/ Box Type:
m_Type = MyType,
/f Box Label:
m_Jabel=MyLabel,
// Number of Origin and Destiny Arcs:
m_NumOriginAres=MyNumOriginArcs;
m_NumDestiny Arcs=MyNumDestinyArcs;
/f Array of Indexes to Origin Arcs:
if ((m_MNumOriginAres>0)&&MyOriginindex!=NULL))
{
mp_OriginArcIndex=new long{m_NumOriginArcs);
for (long index=0;index<m_NumOriginAros;index-++)

{
mp_OriginArcindexiindex]=MyOriginIndex|index];
b

else
{
mp_OriginArcIndex=NULL;
}

/ Array of Indexes to Destiny Arcs:

if ((m_NumDestinyArcs>0)&&(MyDestinylndex!=NULL))
{

mp_Destiny ArcIndex=new long[m_NumDestinyArcs];

for (fong index=0;index<m_NumDestinyArcs,index-++)
{
mp_DestinyArcIndex{index]=MyDestinyIndex|index],
}

}

{
mp_DestinyArcIndex=NULL,

else

1
Flag: Do I have any mark inside this box?
m_HasAnyMark=FAISE;

//0ld CTransformatorBox Data Members:
/ Transformator Engine array of Attributions:

- 186 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

i mp_AtributionArmray=NULL;
f m_NumAtiributions = 0;
//0ld CCapacity Box Data Members:

/{ Box Capacity:

m_Capacity= MyCapacity;

/f Box Asray of Marks

mp_BoxMarkArray=new CMarkArray,

/1 Picking Order Preference:
m_Fifo= IsFifo,

mp_ConditionsArray = NULL,

mp_ThenAttributions = NULL;

mp_ElseAttributions = NULL,
}

long CBox::GetNumMarks()

{
long RetumValue=0,
if (m_Type==CAPACITY_BOX|jm_Type==PACKING BOX|im_Type=—=UNPACKING_BOX)

1
RetumValue= mp_BoxMarkArray->GetSize();

}

t
RetumValue = (Jong)m_HasAnyMark;

}

retum RetumValue,
}

BOOL CBox::IsFull()
{

if (m_Type==CAPACITY_BOX]jm_Type==PACKING_BOX]im_Type=<UNPACKING BOX)

else

{
ASSERT(mp_BoxMarkArray->GetSize{}<=m_Capecity),
if {mp_BoxMarkArray->GetSize(}<m_Capacity)

{
return FALSE;
¥

{
retam TRUE;

H

else

ASSERT(FALSE),
retumn FALSE;
¥
{
return m_HasAnyMark;
}

else

H

BOOL CBox::HasNorMoreMarks(long NumMarks)
{

ASSERT(m_Type==CAPACITY_BOX|jm_Type==PACKING BOX|im_Type=UNPACKING_BOX),
ASSERT (mp_BoxMarkArmray!=NULLY,
if (mp_BoxMarkAmay!=NULL)
{
if (mp_BoxMarkArray->GetSize(<NumMarks)

{

return FALSE;
}

{

return TRUE;

}

}
if (n_Capacity==]&&NumMarks>1}

else

- 187 -

Controlador E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

{
return FALSE;
}
if ({m_Capacity==1)& &(MNumMarks==1)&&(HasMark()}
{
return TRUE,

H
/ Should never get here
ASSERT(FALSEY,
return FALSE;
H

Copy Constructor and Operator equal:

CBox::CBox(const CBoxd& BoxSre)

{

m_Type = BoxSre.m_Type;

// Box Label:

m_Label=BoxSrc.m_Label;

Number of Origin and Destiny Arcs:
m_NumOriginArcs=BoxSrc.m_NumOriginArcs;
m_NumDestinyAres=BoxSre.m_NumDestinyArcs,

Array of Indexes to Origin Arcs:

if ((m_NumOriginAres>0)&&(BoxSre.mp_OriginAreIndex!=NULL))

£

mp_OriginArcindex= new long[tn_NumOriginAres];

for (long i=0;i<m_NumOriginAres;i++)
{
mp_OriginArcIndexfi]=BoxSre.mp_OriginArcIndex{i]:

}
else

{

mp_OriginArcIndex = NULL;
#f Array of Indexes to Destiny Arcs:

if ((m_NumDestinyAres>0)&&(BoxSre.mp_DestinyArcindex!=NULL})
{
mp_DestinyArcIndex= new long[m_NumDestinyArcs];
for (long i=0;i<m_NumDestinyArcs;i-+)
£

mp_DestinyArclndex[i]=BoxSre.mp_DestinyArcIndex(i],
}
i

{
mp_DestinyArclndex=NULL,

H

// Flag: Do I have any mark inside this box?
m_HasAnyMark=BoxSrc.m_HasAnyMark;
// This Box Mark:
m_BoxMark=BoxSrc.m_BoxMark,

else

R T
mp_ConditionsArray = NULL;
mp_ThenAttributions = NULL;
mp_ElseAttributions = NULL;
if (BoxSre.mp_ConditionsArrayl=NULL)
{
mp_ConditionsArray = new CCondArray;
*mp_ConditionsArray) = *(BoxSre.mp_Conditions Array);
if (BoxSrc.mp_ThenAfttributions!=NULL)
{
mp_ThenAttributions = new CAtbaMatrix;
*(mp_ThenAtiributions) = *(BoxSrc.mp_ThenAttributions);

-188-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

}
if (BoxSrc.mp_ElseAttributionst=NULL)

{
mp_ElseAttributions = new CAtbnMatrix;
*(mp_ElseAttributions) = *(BoxSrc.mp_ElseAttributions);

}
/Old CCapacity Box Data Members;
// Box Capacity:
m_Capacity= BoxSic.m_Capacity,
// Box Array of Marks

if (BoxSre.mp_BoxMarkArray!=NULL)

{
mp_BoxMarkArray=new CMarkArray;
for (Jong i=0;i<BoxSrc.mp BoxMarkArmey->GetSize();i++H)

{
mp_BoxMarkArray-> Add(BoxSre. mp_BoxMarkArray->GetAt(i));

}

else
{
mp_BoxMarkArray=NULL,
H

/ Picking Order Preference:

m_Fifo= BoxSre.m_Fifo,
m_Deadlock = BoxSrc.m_Deadlock;
mp_Owner=BoxSrc.mp Owner,

m_StartTime = BoxSrc.m_StartTime;

m_TimeCte = BoxSre.m_TimeCte;

m_TimeCount = BoxSre.m_TimeCouat;
m_IsTimerRunning = BoxSre.m_IsTimerRunning;
m_HasTimerRunned = BoxSrc.m_HasTimerRunned;

}

CBox& CBox::operator = {CBox& BoxSrc)
{
m_Type = BoxSre.m_Type;
/{ Box Label:
m_Label=BoxSre.m_Label:
/f Number of Origin and Destiny Arcs:
m_NumOriginArcs=BoxSre.m_MumOriginArcs;
m_NumDestinyAres=BoxSre.m_NumDestinyArcs;
/f Array of Indexes to Origin Arcs:
if ((m_NumOriginAres>(0)& &(BoxSre.mp_OriginArcIndex!=NULL)}
{
if (mp_OriginArcIndex!=NULL)
f
delete [] mp_OriginArcIndex;
mp_QOriginArcIndex=NULL;

}
mp_OriginArcIndex= new long[m_NumOriginArcs];
for (long 1=0;i<m_NumOriginArcs;i++)
{
mp_OriginArcIndex{i]=BoxSre.mp_OriginArcIndex]i];
}
}

else
{
mp_QOriginArcIndex = NULL;
}

/ Array of Indexes to Destiny Arcs:

if ((m_NumDestinyArcs>0)&& (BoxSte.mp_DestinyArcIndex!=NULL))
{
if (mp_DestinyArcIndex!=NULL)

{
delete [] mp_DestinyArcIndex;
mp_DestinyArcIndex = NULL;

mp_DestinyArcIndex= new long[m_NumDestinyArcs];

- 189 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

for (long =0;i<m_NumDestinyArcs;i++)

{
mp_DestinyArcIndex{i]=BoxSrc.mp_DestinyArcIndex(i},
}

}

{
mp_DestinyArcIndex=NULL,;
}

/ Flag: Do I have any mark inside this box?
m_HasAnyMark=BoxSrc.m_HasAnyMark;
// This Box Mark:
m_BoxMark=BoxSrc.m_BoxMark;

else

HOld CTransformaterBox Data Members:
L T L T T

if (mp_ConditionsArray!=NULL)
{
delete mp_ConditionsArray;
mp_ConditionsArray = NULL,

if (mp_ThenAttributions!=NULL)
{
delete mp_ThenAttributions,
mp_ThenAtiributions = NULL;

if (mp_ElseAttributionst=NULL)

{
delete mp_ElseAttributions;

mp_ElseAttributions = NULL,

}
if (BoxSre.mp_ConditionsArray!=NULL)

{

mp_ConditionsArray = new CCondArray;

*{mp_ConditionsArray) = *(BoxSre.mp_ConditionsArray);
if (BoxSre.mp_ThenAttributions!=NULL)

{

mp_ThenAttributions = new CAtbnMatrix;

*(mp_ThenAttributions) = *(BoxSrc.mp_ThenAdttributions);
if (BoxSre.mp_ElseAttributions!=NULL})

{

mp_ElseAttributions = new CAtbnMatrix;

*(mp_ElseAttributions) = *(BoxSrc.mp_ElseAttributions);

Y T i T e i

HfOld CCapacity Box Data Members:
/ Box Capacity:
m_Capacity= BoxSrc.m_Capacity,
Box Array of Marks
if {BoxSre.mp_BoxMark Array!=NULL)
{

if {mp_BoxMarkArray!=NULL)

{
delete mp_BoxMarkArray,
mp_BoxMarkArmay = NULL;

}
mp_BoxMarkArray=new CMarkAsray;
for (long i=0;i<BoxSrc.mp_BoxMarkArray->GetSize();i++)

-190 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

{
mp_BoxMarkArrey->Add(BoxSre.mp_BoxMarkAmay->GetAt());
H

}

else
{
mp_BoxMarkArray=NULL,
}

// Picking Order Preference:

m_Fifo= BoxSte.m_Fifo;
m_Deadlock = BoxSre.m_Deadlock;
mp_Owner=BoxSre.mp_Owner;

m_StartTime = BoxSre.m_StartTime;

m_TimeCte = BoxSre.m_TimeCte;

m_TimeCount = BoxSrc.m_TimeCount;
m_IsTimerRunning = BoxSre.m_IsTimerRunning;
m_HasTimerRunned = BoxSre.m_HasTimerRunned,

return *this;
¥

IMPLEMENT_SERIAL (CBox,COhbiject, 1);
void CBox::Serialize(CArchive& ar)

{
ASSERT(FALSE); // Not being nsed;
H

void CBox::ResetMarkFlag()
{
ASSERT(FALSE); // Not being used,
}
BOOL CBox::IsAReadyPreCondition()

{
BOOL ReturnVahie = FALSE;
switch (GetType())

{

case COMMON_BOX:

{
ReturnValue = HasMark(),

break;

'
case TEMP_BOX:

{
ReturnValue = HasMark(&&HasTimerRunned();

break;
}
case CAPACITY BOX:

{
RetumValue = HasMark(;

break;

}

case TRANSFORMATOR_BOX:
{
ReturnValue = HasMark(),
break;
3

case PACKING_BOX:

{
RetumValue = IsFull();

break;

}
case UNPACKING BOX:

{
ReturnValue = HasMark();

if (m_Deadlock)

{
ReturnValue = FALSE;

}
H

- 191 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

b
return RetuinValue,
}

BOOL CBox::IsAReadyPosCondition()
{

BOOL ReturnValue = FALSE,

switch (GetType())

{

case COMMON_BOX:
{
RetumValue = 'HasMark();
break;

}
case TEMP_BOX:
{
ReturnValue = {HasMark();
break;

}

case CAPACITY BOX:
{
RetunValue = IsFull(),
break;

}

case TRANSFORMATOR_BOX:
i
ReturnValue = |HasMark();
break;

H
ease PACKING_BOX:

{
ReturnValue = [TsFull(),
break;

}
case UNPACKING_BOX:
{
RetumValue = !HasMark();
if (m_Deadlock)
{
RetunValue = FALSE;
}
}
X
return ReturnValue;
}

void CBox::ResetDeadlock()

{
m_Deadlock=FALSE;
i

BOOL CBox::IsDeadlock()

{
return m_Deadlock;
}

void CBox::SetBoxAsTemporized(long MyTimeCte)// only for Common Box

{
ASSERT(m_Type==COMMON_BOX);
m_Type = TEMP_BOX;

m_TimeCte = MyTimeCte;
m_IsTimerRunning = FALSE;
m_HasTimerRunned = FALSE;
m_TimeCount = 0,

}

void CBox:: StartTimer(CTime MyTime)
{

m_StartTime = MyTime,

ResetTimer();

}

-192 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producdo

void CBox::UpdateTimer(CTime MyTime)

{

if (IsTimeCournting())
{
CTimeSpan DeltaT = MyTime-m_StartTime;
m_TimeCount = DeltaT.GetTotalSeconds(),
if (m_TimeCount>=m_TimeCte)

{
m_HasTimerRunned = TRUE;
H

else

{
m_HasTimerRunned = FALSE;
}

}

else

{
StartTimer(MyTime),
}

}

BOOL CBox::IsTimeCounting(}
{

return m_IsTimerRunning;

}
void CBox::ResetTimer()

m_JsTimerRunning= FALSE,
m_HasTimerRunned = FALSE;
m_TimeCount =(;

H

BOQOL CBox::HasTimerRunned()
{

return m_HasTimerRunned;

1
void CBox::AddBlock(class CCandArray MyConditions, class CAtbnMatrix MyThenAtbn, class CAtbnMatrix MyElseAtbn)

{
ASSERT(m_Type=—=TRANSFORMATOR_BOX);
if (mp_ConditionsArray!=NULL)

{

delete mp ConditionsArray;

mp_ConditionsArray = NULL;

H

if (mp_ThenAttributions!i=NULL)

delete mp_ThenAttributions,
mp_ThenAttnbutions = NULL,

if {mp_ElseAttributions!=NULL)

delete mp_ElseAttributions;
mp_ElseAtiributions = NULL;
b

mp_ConditionsArray = new CCondArray,
mp_ThenAtiributions = new CAtbnMatrix;
mp_ElseAttributions = new CAtbnMatrix;

*(mp_ConditionsArray) = MyConditions;
*(mp_ThenAttributions) = MyThenAtbn;
*(mp_ElseAittributions) = MyElseAtbn;

}

Files Transit.h and Transit.cpp: E-MFG Transitions
// ransith eMFG Transitions Definition:

i
/ version:2.0

-193 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

Definition Date: 16/12/97

/ Last Modified: 08/07/98

/f programmed by: Daniel M. 8. Ferreira
/! last modified by: Daniel M. S, Ferreira

i Objetivos: Definir a estrutura de dados dos elementos de mudanga de estado
/ {iransigdes) do grafo.

class CTransition:public CObject

{

{/ member variables;

protected:

CGraph* mp Owner,

short m_Type;
CString m_Label;// Transition Label
long m_NumOriginAres;
fong m_NumDestinyArcs;
long* mp_OriginArcIndex:// Armay of Indexes to Origin Arcs
long* mp_DestinyArcIndex;// Array of Indexes te Destiny Arcs
long m_NumGates,
long* mp_Gatelndex;// Array of Indexes to Gates

BOOL m_IsPossibilyFireable;

BOOL m_IsEnabled,

BOOL m_TsFireable;

BOOL m_IsFlaggedForNextStateChange;

BOOL m_HasCondition;
long m_Conditionlndex;

BOOL m_IsASolvedConflict;
// Temporized Transitions Data Mambers:

CTime m_StartTime,

long m_TimeCte;

long m_TimeCount;

BOOL m_IsTimetRunning;
BOOL m_HasTimerRunned,
BOOL m_HasTimer;

public:
/ Constmiction & Destruction
CTransition();

CTransition(const CTransition& StcTrans);
CTransition& operator=(CTransition& SrcTrans);

~CTransition(};

// Build Functions
void Create(CGraph* MyGraph,short MyType,C8tring MyLabel, long MyNumOrigin, long, MyNumDestiny, long*
MyOriginArray, long* MyDestinyAsray, long MyNumGates, long* MyGates);

void AddOriginAre(long MyOriginArclndex);
void AddDestinyArc(long MyDestinyArcIndex);

void RemoveOriginArc(long MyOriginArcIndex),
void RemoveDestinyArc(long MyDestinyArcIndex);

long GetNumOriginArcs();
long GetNumDestinyAres(),
long GetiNumGates();

long* GetOriginArcs();
long* GetDestinyAres();
long* GetGates(),

BCOL IsChangeFlagged();

-194 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

BOOL SetChangeFiag(BOOL MyStatus);

BOOL IsFireable();
BOOL SetFireableFlag(BOOL MyStatus),

BOOL IsEnabled();
BOOL SetEnableFlag(BOOL MyStatus);

BOOL IsPossiblyFireabie();
BOOL SetPossiblyFireableFlag(BOOIL MyStatus),

BOOL CanBeFired();

void FireTransition(long MyMarkID=0);
void ResetFlags();

void UpdateFlags();

CString GetLabel();

BOOL IsA SolvedConflict();
BOOL SetConflictFlag(BOOL Status),

void SetCondition(long MyCondition);

// Temporized Transitions Functions (not implemented):

public:
void SetAsTemporized(long MyTimeCte),

void StartTimer(CTime MyTime);

void UpdateTimer(CTime MyTime);

BOOL IsTimeCounting();

void ResetTimer(),

BOOL HasTimerRunned(),

b

/ transit.cpp eMFG Transitions Implementation:
#

version:2.0

// Definition Date: 16/12/97

/f Last Modified: 08/07/98

// programmed by: Daniel M. S, Ferreira

last modified by: Daniel M. 8. Ferreira

i
Objetivos: Implementar a estrutura de dados dos elementos de mudanga de estado
{f (transig&es) do grafo.

#include "stdafx.h" /f standard windows aplication
#include "glemenis.h" /#/ E-MFG Standard Elements

CTransition::CTransition()

{

m_Type=COMMON_TRANSITION./ Transition Type
m_Label="",// Transition Label

m_NumOriginAres=0,

m_NumDestinyArcs=0;

mp,_OnginArclndex=NULL,/ Array of Indexes to Origin Arcs
mp_DestinyArcIndex=NULL;// Array of Indexes to Destiny Ares
m_NumGates=0,

mp_Gatelndex=NULL:# Array of Indexes to Gates

Graph Dynamics Flags:

m_IsPossibilyFireable=FALSE;

m_IsEnabled=FALSE;

m_IsFireable=FALSE;
m_IsFlaggedForNextStateChange=F ALSE;

m_HasCondition=FALSE;
m_Cenditionfndex=-1;
m_IsASolvedConflict = FALSE,

//CTime m_StartTime;

-195-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

m_TimeCte =0,

m_TimeCount = 0;
m_JsTimerRunning = FALSE;
m_HasTimerRuaned = FALSE,
m_HasTimer = FALSE;

}

CTransition::CTransition{const CTransition& Sr¢Trans)
{
mp_Owner = Sr¢Trans.mp_Owner;
m_Type=SrcTrans.m_Type;/ Transition Type
m_Label=SrcTrans.m_Label;// Transition Label
m_NumOriginArcs=SrcTrans.m_NumOriginArecs;
m_NumDestinyArcs=SreTrans.m_NumDestinyArcs;
if ((SreTrans.mp_OriginArcIndex!=NULL)&&(SrcTrans.m_NumOriginArcs>0))
{
mp_OriginArscIndex = new long{m_NumOriginAses];
for (long index=0;index<m_NumOriginArcs;index++)

{
mp_OriginArcIndex{index]=Sr¢Trans.mp_OriginArcIndex[index];// Array of Indexes
to Origin Arcs
H
}

{
mp_OriginArcindex=NULL;
}

if ((SreTrans.mp_DestinyArcIndext=NULL)&&(SrcTrans.m_NumDestinyArcs>0})

else

{
mp_DestinyArclndex = new long[m_NumDestinyArcs];
for (fong index=0;index<m_NumDestinyArcs;index-++)
{
mp_DestinyArcIndex|index]=SrcTrans. mp_Destiny ArcIndexfindex},// Amay of

Indexes to Destiny Arcs
i
}
else
{
mp_DestinyArcindex=NULL;
}

m_NumGates=Src¢Trans.m_NumGates;
if {{SrcTrans.mp_GateIndex!=NULL)&&(SrcTrans.m_NumGates>())

mp_GateIndex = new long[m_NumGates];
for (long index=0;index<m_NumGates;index++)
{
mp_Gatelndex[index]=SreTrans.mp_Gatelndex{index];/ Array of Indexes to Gates

}

¥

else
{
mp_GateIndex=NULL,
}

// Graph Dynamics Flags:

m_JsPossibilyFireable=SrcTrans.m_IsPossibilyFireable;
m_IsEnabled=S8rcTrans.m_IsEnabled;

m_IsFireable=SrcTrans m_IsFireable;
m_IsFlaggedForiNextStateChange=SreTrans.m_JsFlaggedForiNextStateChange;

m_HasCondition=Src¢Trans.m HasCondition;
m_ConditionIndex=SrcTrens.m_ConditionIndex;
m_IsASolvedConflict=SrcTrans.m_IsASolvedConilict;

m_StartTime=SrcTrans.m_StartTime;

m_TimeCte =SreTrans.mn_TimeCte;

m_TimeCount =SrcTrans.m_TimeCount,
m_JsTimerRunming =SreTrans.m_IsTimerRunning;
m_HasTimerRunned =Sr¢Trans.m_HasTimerRunned,

-196 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

m_HasTimer =SrcTrans.m_HasTimer;

i

CTransition& CTransition::operator=(CTransition& SrcTrans)

{

mp_Owner = SrcTrans.mp_Owner,

m_Type=SrcTrans.m_Type;// Transition Type

m_Label=SreTrans.m_Label,// Transition Labe]

m_NurnOriginArcs=SreTrans.m NumOriginAres;

m_NumDestinyArcs=SrcTrans.m_NumDestinyAres;

if {mp_OriginArcIndex!=NULL)
{
delete [} mp_OriginArcIndex;
mp_OriginArcIndex=NULL;/ Array of Indexes to Crigin Arcs
}

if {(8rcTrans.mp_OriginArcIndex!=NULL)&&(SreTrans.m_NumOriginArcs>0))
{
mp_OriginArcindex = new leng[m_NumOriginAres];
for (long index=0;index<m_MNumOriginArcs;index-+H)

{
mp_OriginArelndexfindex]=SrcTrans mp_OriginArcIndex[index],/7 Array of Indexes

}

to Origin Arcs

else
{
mp_OriginArcindex=NULL,

if (mp_DestinyArcindex!=NULL)
t
delete [] mp_DestinyArclndex;
mp_DestinyArcIndex=NULL,// Array of Indexes to Destiny Arcs

}
if {(SreTrans.mp_DestinyArcIndex!=NULL)&&(SrcTrans.m_NumDestinyArcs>0))
{
mp_DestinyArcIndex = new long[m_NumDestinyArcs];
for (long index=0;index<m_MNumDestiny Arcs;index-++)
{
mp_DestinyArcIndex{index]=SrcTrans.mp_DestinyArcindex[index];// Array of

Indexes to Destiny Arcs
3
}
else
{
mp_DestinyArcindex=NULL;
}

m_NumGates=SrcTrans.m_NumGates;
if (mp_Gatelndex!=NULL)
{
delete [| mp_Catelndex;
mp_Gatelndex=NULL;/ Array of Indexes to Gates
¥
if {(SreTrans.mp_GateIndex!=NULL)&&(SrcTrans.m_NumGates>0))
{

mp_GateIndex = new longfm_NumGates];
for (ong index=0;index<m_NumGates;index++)

{
mp_Gatelndex|index]=SrcTrans. mp_GateIndex[index);// Array of Indexes to Gates

H
H

{
mp_GateIndex=NULL,

}

// Graph Dynamics Flags:
m_IsPossibilyFireable=SrcTrans.m_IsPossibilyFireable;
m_JsEnabled=SrcTrans.m_IsEnabled;
m_IsFireable=SrcTrans.m_IsFireable;

else

-197 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

m_IsFlaggedForNextStateChange=SrcTrans.m_IsFlaggedF orNextStateChange;

m_HasCondition=SrcTrans.m_HasCondition;
m_IsASolvedConflict=SreTrans.m_IsASokvedConflict;
m_ConditionIndex=SrcTrans.m_ConditionIndex;

m,_Star{Time=SrcTrans. m_StartTime;

m_TimeCte =SrcTrans.m_TimeCte;

m_TimeCount =$rcTrans.m_TimeCount;
m_lsTimerRunning =SrcTrans.m_lsTimerRunning,
m_HasTimerRunned =SrcTrans.m_HasTimerRunned;
m_HasTimer =SrcTrans. m_HasTimer;

return *this;
}

CTransition::~CTransition()
{
if (mp_OriginArcIndex|=NULL)
{
delete [] mp_OriginArcIndex;
mp_OriginArclndex=NULL:// Array of Indexes to Origin Ares

}
if (mp_DestinyArcIndex!=NULL)
{
delete [mp_DestinyArcIndex;
mp_Destiny ArcIndex=NULL:// Array of Indexes to Destiny Arcs

}
if (mp_Gatelndex!=NULL})

{

delete [] mp_Gateindex;

mp_Gatelndex=NULL,/ Array of Indexes to Gates
H

woid CTransition::Create(CGraph* MyGraph,short MyType.CString MyLabei, long MyNumOrigin, long MyNumDestiny, long*
MyOriginArray, long* MyDestiny Array, long MyNumGates, long* MyGates)

mp_Owner = MyGraph;

m_Type=MyType;// Transition Type

m_Label=MylLabel,// Transition Labe]

m_NumOriginArcs=MyNumOrigin:

m_NumDestinyArcs=MyNumDestiny;

it (MyOriginArray!=NULL)&&(MyNumQOrigin>0}))
{
mp_OriginArclndex = new long[m_NumOriginArcs];
for (long index=0;index<m_NumOriginAres;index-++)

{

mp_OriginArcIndex[index]=MyCriginArray|index];/ Array of Indexes to Origin Arcs
¥
}

{
mp_OriginArcIndex=NULL;
i

if {(MyDestinyArray!=NULL)&& (MyNumDestiny>0))
{

else

mp_DestinyArcIndex = new long[m_NumDestinyArcs];
for (long index=0;index<m_NumDestinyArcs;index-++)
{
mp_DestinyArcIndex[index]=MyDestiny Array{index],// Array of Indexes to Destiny

}
¥

{
mp_DestinyArcndex=NULL;

H

else

-198 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producfio

m_NumGates=MyNumQates,
if ((MiyGates!=NULL)& &MyNumGates>0))

{

mp_GateIndex = new long[m NumGates];

for (fong index=0;index<m_NumGates;index++)
{
mp_GateIndex[index]=MyGates[index],// Amay of Indexes to Gates
!

}

¢lse
{
mp_GateIndex=NULL;
H

/f Graph Dynamics Flags:

m_IsPossibilyFireable=FALSE;
m_IsEnabled=FALSE;
m_IsFireable=FALSE;
m_IsFlaggedForNextStateChange=FALSE;

m_HasCondition=FALSE;
m_IsASolvedConflict=FALSE;
¥

void CTransition::AddOriginAre(long MyOriginArcIndex)

{
ASSERT(FALSE),
}

void CTransition:: AddDestiny Arc(long MyDestinyArcIndex)

t
ASSERT(FALSE),
¥

void CTransition::RemoveOriginArc(long MyQriginArcIndex)

{
ASSERT(FALSE),
H

void CTransition::RemoveDestinyAre(long MyDestiny ArcIndex)
{

ASSERT(FALSE),

}

long CTransition::GeiNumOriginAres()
{

retum m_NumOriginAres;

}

long CTransition::GetNumDestiny Arcs()
{

return m_NumDestinyArcs;
}

long CTransition::GetNumGates(}

{
retum m_NumGates;

}

long* CTransition::GetCriginArcs()

{

return mp_OriginArcindex;// Array of Indexes to Origin Arcs

}

long* CTransition::GetDestiny Arcs(}

{

refumn mp_DestinyArcIndex,// Array of Indexes to Destiny Arcs
}

long* CTransition::GetGates()

-199 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producfio

{
return mp_GateIndex;// Array of Indexes to Destiny Arcs

}

BOOL CTransition::IsChangeFlagged()
{
return m_IsFlaggedForNextStateChange;

H

BOOL CTransition::SetChangeFlag(BOOL MyStatus)
{
m_IsFlaggedForNextStateChange = MyStatus;
retum m_IsFlaggedForNextStateChange;

}
E e i

BOOL CTransition:: IsFireable(}
{

/ Verifica se existem condigdes booleanas associadas a essa transigfio:
if (m_HasCondition)

{
ASSERT(FALSE),

if (mp_Owner->GetConditions()->GetAt(m_ConditionIndex) Evaluate())

/ {SetFireableFlag(TRUE);}

/ else {SetFireableFlag(FALSE);}
}

else
{
SetFireableFlag(TRUEY,
1

return m_IsFireable;
H

BOOL CTransition:: SetFireableFlag(BOOL MyStatus)

{
m_IsFireable = MyStatus;,
return m_JsFireabie;
}

BOOL CTransition::IsEnabled()

{
BOOL EnabieStatus = TRUE,
long NumGates = GetNumGates();
long* p_GatesIndex = GetGates();
if (NumGates>0)
{
for (long index = 0; index<NumGates;index ++)
{
BOOL Temp = (mp_Owner->GetGates()->GetAt(p_GatesIndex[index])).GoAhead();
EnableStatus = EnableStatus & Temp;

¥
SetEnableFlag(EnableStatus);
else
{
SetEnableFlag(EnableStatus),

return m_IsEnabled;
}

BOOL CTransition::SetEnableFlag(BOOL MyStatus)

{
m_IsEnabled=MyStatus;
return m_JsEnabled ;

}

BOOL CTransition: IsPossiblyFireable()

{
BOOL PreConditions = TRUE;
BOOL PosConditions = TRUE;

- 200 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

long MyNumPreConditions=GetNumCrigin Ares();
long MyNumPosConditions=GetNumDestinyArcs();
long* MyOriginArcs = GetOriginArcs(),

long* MyDestinyArcs = GetDestinyAres(),

for (long index = 0, index<MyNumPreConditions; index++)
{
long BoxIndex = mp_Owner->GetArcs(->GetAtMyOriginArcsfindex]).GetOrigin(),
BOOL Temp = mp_Owner->GetBoxes()->GetAt(BoxIndex). IsAReadyPreCondition();
PreConditions = PreConditions & Temp;
}

for (index = 0; index<MyNumPosConditions; index++)

{
long BoxIndex = tp_Owner->GetArcs()->GetAt(MyDestinyAresfindex]). GetDestiny();

BOOL Temp = (mp_Owner->GetBoxes(->GetAt(BoxIndex). IsAReadyPosCondition());// if has mark =

false else =true
PosConditions = PosConditions & Temp;,
}

return SetPossiblyFireableFlag(PosConditions & PreConditions);
}

BOOL CTransition::SetPossiblyFireableFlag(BOOL MyStatus)

{
m_I[sPossibilyFireable=MyStatus,
return m_lsPossibilyFireable;
}

BOOL CTransition::CanBeFired()

{
return m_IsPossibilyFireable & m_IsEnabled & m_[sFireable & m_IsFlaggedForNextSiateChange;

}
void CTransition::FireTransition(fong MyMarkiD)

{
ASSERT (CanBeFired()),
CMark MyMigratingMark;
MyMigratingMark.Create{mp_Owner,mp_Owner->GetAttribTemplates(), MyMarkiD);
long MyNumPreConditions=GetNumOriginArcs();
long MyNumPosConditions=CGetNumDestinyArcs();
long* MyOriginArcs = GetOriginArcs();
long* MyDestinyArcs = GetDestinyArcs();
BOOL First=TRUE;
for (long index = 0; index<MyNumPreConditions; index++)
{
long Boxlndex = mp_Owner->GetAres()->GetAt(MyOriginArcs{index]).GetOrigin();
CMark Temp = mp_Owner->GetBoxes()->ElementAt(BoxIndex). RemoveMark();
if (First)
{
MyMigratingMark. SetID(Temp.GetID(),
First=FALSE;

}
MyMigratingMark. MergeMark(mp_Ovwmer->GetArcs()->GetAt(MyOriginAres [index]). ApplyFilter(Temp));

!
for (index = 0; index<MyNumPosConditions; index++)

{

long BoxIndex = mp_Owner->GetArcs()->GetAt(MyDestiny Arcs[index]).GetDestiny();

mp_Owner->GetBoxes()->ElementAt(BoxIndex). AddMark(mp_Owner->GetArcs()-
>GetAt(MyDestiny Arcsfindex)). ApplyFilter(MyMigratingMark)y;
H

ResetFlags();
ResetTimer(),

}

void CTransition::ResetFlags()

{

SetChangeFlag(FALSE),
SetEnableFlag(FALSE),
SetFireableFlag(FALSE);
SetPossiblyFireableFlagFALSE),
SetConflictFlag(FALSE);

-201 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

h
void CTransition::UpdateFlags()

{
SetChangeFlag(IsEnabled()&IsFireable(&IsPossiblyFireable(});
if (CanBeFired()&&m_HasTimer)

{
if (sTimeCounting())

m_]sTmerRunning = TRUE,
SetChangeFlag(FALSE);
¥

else

{

if {(HasTimerRunned())
{
SetChangeFlag(TRUE),
}

else
{
SetChangeFlag(FALSE);
}

¥
¥
}

CString CTransition::GetLabel()

return. m_Label;
}

BOOL CTransition:: IsASolvedConflictQ

{
return m_IsASolvedConflict;
}

BOOL CTransition:: SetConflictFlag(BOOL Status)

{

m_JIsASolvedConflict = Status;
return m_IsASolvedConfliet;

}

void CTransition:: SetCondition{long MyCondition)

{

ASSERT(MyCondition>=0);
m_ConditionIndex = MyCondition;
m_HasCondition = TRUE;

}

void CTransition:: SetAsTemporized(long MyTimeCte)

i

ASSERT(MyTimeCte>0);
m_TFimeCte = MyTimeCte;
m_JsTimerRunning = FALSE;
m_HasTimerRunned = FALSE;
m_TimeCount = 0;
m_HasTimer = TRUE;

}

void CTransition::StartTimer(CTime MyTime)
m_StartTime = MyTime;

ResetTimer();
¥

void CTransition::UpdateTirmer(CTime MyTime)
{
if (IsTimeCounting())
{
CTimeSpan DeltaT = MyTime-m_StartTime;
m_TimeCount = DeltaT.GetTotalSeconds(),

-202-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgio

if (m_TimeCount>=m_TimeCte)

{
m_HasTimerRunned = TRUE;
}

else

{
m_HasTimerRunned = FALSE;
}

}

else

{
Start Timer(MyTime);
}

t

BOOL CTransition::[sTimeCounting()

return m_IsTimerRunning;
¥

void CTransition: ResetTimer()

m_IsTimetRunning= FALSE;
m_HasTimerRunned = FALSE;
m_TimeCount = 0;

}
BOOL CTransition::HasTimerRunned()

return m_HasTimerRunned;
H

Files Arcs.h and Arcs.cpp: E-MFG Ares
/f arcs.h - eMFG Arcs Definition:

{/ version: 2.0

/f Definition Date: 11/12/97

/f Last Modified:08/07/98

/f programed by: Daniel M. 8. Ferreira

/ last modified by: Daniel M. S. Ferreira

#f Ohbjetivos: Definir a estrutura de dados dos elementos de conexéio
#/ do grafo (arcos direcionais)

#include"arcfilt h"

class CArc : public CObject
{
protected:
class CGraph* mp_Owner, /# Owner Graph
short m_OriginType; {f Tipo de Origem
long m_Originlndex: //Indice da Origer
long m_DestinyIndex[2]; // fndices dos destinos
CString m_Label, // nome do arco
CArcFilter m_Filter;, // filtro do arco

public:
J/f Default Construction & Destruction
CArc();
~CAre(),
{/ Build Functions
void Create(class CGraph* MyOwner, CString MyLabel,short MyCriginType, long MyOriginindex, leng MyDestinyIndex);
// Data Management

long GetOrigin();
long GetDestiny();

-203-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

void SetOrigin{long MyQrigin),
void SetDestiny(fong MyDestiny), /single destiny or condition = TRUE Destiny

void SetFilter(CArcFiiter MyFilter),

i CMark AplyFilter(CMark& SrcMark);
CMark ApplyFilter(CMark& SreMarky,

CAre{ const CAre& ArcSrc),
CArc& operator = (const CArc& ArcSre),

I

1/ arcs.cpp - eMFG Ares Implementation:
/f version: 2.0

Definition Date: 11/12/97

{f Last Modified: 08/07/98

/! programed by: Daniel M. 8. Ferreira

// 1ast modified by: Daniel M. §. Ferreira

/f Objetivos: Definir a estrutura de dados dos elementos de conexio
/{ do grafo (arcos direcionais)

#include "stdafx.h" /! standard windows aplication
#include "elements.h" /E-MFG Standard Elements

CArc::CArc(

{

mp_Owner=NULL; /1 owner graph pointer
m_OniginType=UNKNOWN, / Arc's origin type
m_Originindex = -1; // origin index

m_DestinyIndex[0] = -1, // default destiny index
m_DestinyIndex[1] = -1, // secondary destiny index
m_Label ="*; { Are's name (used for dump purposes)
H

CArc:~CArc))

{
{{ the graph pointer should never be deleted by a structural element

CArci:CAre(const CAred& ArcSre)

{

{{ copy constructor implementation

ASSERT(ArcSre.mp_Owner!=NULL);

mp Ovwner=ArcSre.mp Owner, /! owner graph pointer
m_OriginType=ArcSre.m_OriginType, /1Arc's origin type
m_Qriginlndex = AreSre.m_Originindex; / origin index
m_DestinyIndex[0] = ArcSrc.m_DestinyIndex([0]; # default destiny index
m_DestinyIndex{1] = ArcSrc.m_Destinylndex[1]; // secondary destiny index
m_Label = ArcSre.m_Label; /I Are's name (used for dump purposes)
m_Filier = ArcSrc.m_Filter; /f Arc's Mark Filter

}

CArc& CArc::operator = {(const CArcd ArcSre)

{

/f this operator makes & copy of the right side attribution element
ASSERT(ArcSre.mp_Owneri=NULL),

mp_Owner=AreSrc.mp_Owner, /f owner graph pointer
m_OriginType=ArcSre.m_OriginType, //Arc's origin type
m_OriginIndex = ArcSre.m_Originindex; / origin index
m_DestinyIndex[0] = AreSre.m_DestinyIndex|0]; // default destiny index
m_DestinyIndex[1] = ArcSre.m_Destinylndex[1]; // secondary destiny index

m_Label = ArcSre.m_Label; /1 Arc’s name (used for dump pusposes)
m_Filter = ArcSre.m_Filter; / Arc's Mark Filter

return *this;

}

-204 -

Controlador E-MFG para Sistemas Integrades e Flexiveis de Produgfo

void CArc::Create(class CGraph* MyOwner, CString MyLabel,short MyOriginType, long MyOriginIndex, long MyDestinyIndex)
{

/ this function creates a fully functional are

ASSERT(MyCwner!=NULL);

mp_Ovmner=MyQOwner; //the owner graph

m_Label = Mylabel; // Arc's name

m_OriginType=MyOriginType:// Arc's crigin Type

m_QOriginIndex = MyOriginIndex;// origin index

m_DestinyIndex]0] = MyDestinyIndex,// default destiny index

m_DestinyIndex[1] = -1,/ secondary destiny index
m_Filter.Create{mp_Owner,PASS_ALL,0.NULL,PASS_COMPOSITE); // The filter defaults to PASS_ALL
H

long CArc::GetOriginQ

{

// return the arc's origin index here
return m_Originlndex;

H

long CArc::GetDestiny()

{

// return the arc's actual destiny index here
return m_DestinyIndex[0];

}

void CAre::SetOrigin(long MyOrigin)

{

// updates arc's origin (ot used for the E-MFG controller program)
m_Originlndex = MyOrigin,

H

void CArc::SetFilter(CArcFilter MyFilter)

{
f updates arc's filter
m_Filter = MyFilter;
H

void CArc::SetDestiny(long MyDestiny)

{

// updates arc’s destiny (not used for the E-MFG controller program)

/ any logic related to changing dinamically the are's destiny should be added

fo this function

// the arc has a pointer to the graph so it can modify the other references in the graph
fltoit

m_DestinyIndex{0] = MyDestiny,

CMark CArc:: ApplyFilter(CMarké& SrcMark)
{

return m_Filter. ApplyFilter(SrcMark);

feturn SrcMark;

}

Files Gates.h and Gates.epp: E-MFG Gaies

/f gates h EMFG Gates Definition:
i

I/ version:2.0a

/] Definition Date: 27/05/98

/f Last Modified: 01/06/98

/] programed by: Mareo A. A. Silva

/1 Objetivos; Definir a estrutura de dados dos elementos de /O
/ (gates) do grafo,

class CGate:public CObject

{
// empty constructor / destructor
public:

CGate);

~CGate(,

-205-

Controlader E-MFG para Sistemas Integrados ¢ Flexiveis de Producio

void Create (class CGraph* MyGraph, short MyType, short MyRetType, CString MyLabel, short MyBox, short
MyAttrib, short MyTransition, CString MyMethod, CString MyParameter, short myActivation);

#/ Copy Constructor:
CGate{ const CGate& GateSre),
{f Operator =
CGate& opetator=(const CGate& GateSrc),
/f Function Members:
public:
short GetType();
CString GetLabel();
short GetBox();
short GetAtirib();
short GetTransition(};
CString GetMethod();
CString GetParameter();

short GetRetType(),
short GetActivation();

public:
void SetBOOLBOOL arg);
BOOL GoAhead(),
vord SetString(CString arg);
CString GetString(}:
void SetInteger(short arg);
leng Getlnteger(},

public:
void AddConditional(CConditional* pCend);
void RemoveConditional();

Data Members:
protected:
class CGraph* mp_Cwner, 4
Owner Graph
short m_Type;
fitipo do gate
CString m_Label;
/nome do gate
short m_Box;
/fbox associada
short m_Aftrib; /fatributo associado
short m_Transition;
/Hransicio agsociada
CString m_Method,
/fmétodo de comunicagiio
CString m_Parameter;
/fparBmetro de comunicagio
short m_Activation; Htipo de ativagio
BOOL m_boolean,
/fboolean return value
CString m_string;
ffstring retumn value
long m_integer;
/finteger return value
short m_reitype; Hreturn type

CConditional* mp_Cond,;
{fassociated conditional structure

S

// gates.cpp eMFG (ates Implementation:

i

/ version:2.0

/f Definition Date: 27/K5/98

/i Last Modified: 15/06/98

/f Programmed by: Marco A, A, Silva

// Last modified by: Marco A. A. Silva

"

/f Objetivos: Implementar a estrutura de dados dos elementos de FO
/f (gates) do grafo. Esté prevista a comunicagfo com oulros programas

- 206 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producéio

Jfvia DDE stravés dos valores registrados nesses elementos.

#include "stdafich" {/standard windows aplication
#include "elements.h" /{ EMFG Elements include list
CGate::CGate()
{

mp_Owner = NULL;

mp_Cond =NULL;

m_Type =NULO;

m_Label ="

m_Box =NULO;

m_Atirib =NULO;
m_Transition= NULO;,
m_Method ="
m_Parameter =",
m_boolean =FALSE;
m_string ="
m_integer =NULGO;

m_rettype = NULO;

}

CGate::CGate{ const CGate& GateSre }

{
mp_Owner = GafeSrc.mp_Owner;
m_Type = GateSrc.m_Type;

/Mtipo do gate
m_label =GateSrem_Label,

/mome do gate
m_Box =GaleSre.m_Box;
/fbox associada
m_Attrib = GateSrc.m_Adttrib; {fatributo associado
m_Transition= GateSrc.m_Transition,
Hransicdio associada
m Method = GateSre.m_Method;

/imétodo de comunicagiio
m_Parameter = GateSre.m _Parameter;
Jiparimetro de comunicagio

m_Activation= GateSre.m_Activation; fftipo de ativagio
m_boolean = GateSrc.m_boolcan;
{/boolean return value
m_string = GateSre.m_string;
/fstring refurn value
m_integer = GateSrc.m_integer;
ffinteger return value
m_rettype = GateSrc.m_rettype; {freturn type

mp_Cond =NULL;
if (GateSre.mp_Cond!=NULL})

mp_Cond = new CConditional;
*(mp_Cond) = *(GateSre.mp_Cond),
}

}

CGate& CGate:;operator=(const CGate& GateSrc)
{
mp_Owmer = GateSre.mp_Owner;
m Type =GateSrc.m_Type;
/tipo do gate
m_Label = GateSre.m_abel;
/mome do gate
m_Box = GateSre.m Box;
{box associada
m_Attrib = GateSre.m_Adtrib; Matributo associado
m_Transition= GateSrc.m_Transition;
Hransiglio associada
m_Method = GateSre.m_Method;
/imétodo de comunicagho

-207 -

H{Orwmer Graph

/fOwner Graph

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

m_Parameter = GuteSrc.m_Parameter;
/fparfimetro de comunicagio
m_Activation= GateSrc.m_Activation; /itipo de ativagéio
m_boolean = GateSre.m_boolean;
/fboolean retumn value
m_siring = GateSre.m._string;
/Hstring return value
m_integer = GateSrc.m_integer;
/finteger return value
m_gettype = GateSro.m,_rettype; freturn type

if (mp_Cond!=NULL})

{

delete mp_Cond,
mp_Cond =NULL,
}

if (GateSre.mp_Cond!=NULL)
{
mp_Cond = new CConditional,
*(mp_Cond) = *(GateSrc.mp_Cond);
}

return *this;
}

CGate::~CGate)
{

{
delete mp_Cond,;
mp_Cond=NULL,
1
h

if (mp_Cond!=NULL)

Heonstrutor genérico (ver usos dentro de eada tipo)

void CGate::Create (class CGraph* MyGraph, short MyType, short MyRetType, CString MyLabel, short MyBox, short MyAtirib,

short MyTransition, CString MyMethod, CString MyParameter, short myActivation)

{
mp_Owmer = MyGraph,

m_Type = MyType;
m_Label = MyLabel,

switch (m_Type)
i
default:
{
ASSERT (0); /fnenhum tipo definido foi espesificado
break;

}

{exemplo.Create(INT_PERMIT,BOOLEAN,"Permit]",iBox.iTrans,"INTERNAL",");
case INT_PERMIT:

{
m_Box = MyBox;
m_Attrib = NULO;
m_Transition = MyTransition;
ASSERT (MyMethod=="INTERNAL"},
m_Method = "INTERNAL",
m_Parameter ="";
m_Activation =NULO;
m_rettype = BOOLEAN,
break;
}

Hexemplo Create(INT_NOT_PERMIT,BOOLEAN, NotPermit] " iBox,iTrans,"INTERNAL","Y,
case INT_NOT_PERMIT:

m_Box = MyBoex;

m_Attrib = NULO,
m_Transition = MyTransition;

-~ 208 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

ASSERT (MyMethod=="INTERNAL"),
m_Method = "INTERNAL";
m_Parameter ="";

m_Activation = NULO;

m_rettype = BOOLEAN;
break;
H

Hexemplo.Create(INT, " FULIL_PERMIT,BOOLEAN, Permit] " iBox,iTrans,"INTERNAL",""),
case INT_FULL_PERMIT:

{
m_Box = MyBox,
m_Attrib = NULO;
m_Transition = MyTransition;
ASSERT (MyMethod=="INTERNAL"},
m_Method = "INTERNAL",
m_Parameter = "";
m_Activation = NULO;
m_rettype = BOOLEAN;
break;
¥

Hexemplo.Create(INT " FULL_NOT_PERMIT,BOOELAN,"Permit1 " {Box,iTrans, INTERNAL","™);
case INT_FULL_NOT_PERMIT:

{
m_Box = MyBox;
m_Attrib = NULO;
m_Transition = MyTransition;,
m_Method = "INTERNAL",
m_Parameter = "";
m_Activation = NULO,
m_rettype = BOOLEAN,
break;
}

fexemplo.Create(EXTERNAL_INPUT_PERMIT,BOOLEAN,"Permit2" NULO,Trans,"DDE","Grafolgate™;
case EXTERNAL _INPUT_PERMIT:

{
m_Box =NULO;
m_Attrib = NULO,
m_Transition = MyTransition;
m_Method = MyMethod,
m_Parameter = MyParameter,
m_Activation = myActivation;
m_reitype = BOOLEAN,
break;
K

/Iexemplo.create(EXI’ERNAL_]NPUT_NOT_PERJVﬂT,BOOLEAN "Permit2" NULOQ,iTrans,"DDE","Grafolgate™;
case EXTERNAL INPUT_NOT_PERMIT:

{
m_Box =NULO;
m_Attrib = NULO;
m_Transition = MyTransition,
m_Methed = MyMethod,
m_Parameter = MyParameter,
m_Aciivation = myActivation;
m_rettype = BOOLEAN;
bresk;,
}

ilexemplo.Create(EXTERNAL_OUTPUF_PERI\AIT,BOOIEAN J"Permit2",iBox, NULO,"DDE",""),
case EXTERMAL_OQUTPUT_PERMIT:

{
m_Box = MyBox,
m_Attrib =NULO,
m_Transition = NULO,
m_Method = MyMethod;
m_Parameter = MyParameter;
m_Activation = myActivation;

-209 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producfio

m_rettype = BOOLEAN,
break;
}

Hexemplo. Create(EXTERNAL_OUTPUT_NOT_PERMIT,BOOLEAN, "Permit2",iBox, NULO, DDE",");
case EXTERNAL_OUTPUT_NOT_PERMIT:

m_Box = MyBox;
m_Attrib = NULO;
m_Transition = NULO;
m_Method = MyMethod;
m_Parameter = MyParameter;
m_Activation = myActivation;
m_rettype = BOOLEAN;
break;
}

Jfexemplo Create(EXTERNAL_OUTPUT_FULL_PERMIT,BOOLEAN, "Permit2",iBoxNULO,"DDE","");
case EXTERNAL_OUTPUT_FULI,_PERMIT:

m_Box = MyBox;
m_aAttrib = NULO;
m_Transition = NULO,
m_Method = MyMethod,
m_Parameter = MyParameter;
m_Activation = myActivation;
m_rettype = BOOLEAN;
break;,
}

f/exemplo.create('EXTERNAL_OUTPUT_FU]L_NOT_PERlVIIT,BOOLEAN,"PemlitZ",iBox,NULO,"DDE","");
case EXTERNAL_QUTPUT_FULL NOT_PERMIT:

m_Box = MyBox;
m_Attrib = NULO;,
m_Transition = NULO,
m_Method = MyMethod,
m_Parameter = MyParameter,
m_Activation = myActivation;
m_rettype = BOOLEAN,
break,
}

Hexemplo.Create(INT_DATA,TEXT_ATRIB/INTEGER_ATRIB,"Datal " NULO,NULQ,"INTERNAL","box!atributo);
case INT_DATA:
{
Houteasted

H

fexemplo,Create(INT_N,INTEGER_ATRIB,"Datal",iBox, NULO,"INTERNAL","");
case INT_N:

{
m_Box = MyBox;
m_Attrib = NULQO,
m_Transition = NULO,
m_Method = "INTERNAL";
m_Parameter =",
m_rettype = INTEGER_ATRIB,
break;
¥

Hexemplo.Create(EXTERNAL_OUTPUT_DATA,TEXT_ATRIB/INTEGER_ATRIB, "ExtDatal" NULONULO,"DDE
* "boxtatributo®),
case EXTERNAL_OUTPUT_DATA:

m_Box = MyBox;
m_Attrib = MyAttrib;

m_Transition = NULO;

m_Method = MyMethod,

-210-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

m_Parameter = MyParameter,
m_Activation = myActivation;
m_rettype = MyRetType;

}

//examplo.Create(EXTERNAL_OU'I'PUT_N,II\JTEGER__ATRIB,"ExﬂJata 1*,iBox, NULO,"DDE",),
case EXTERNAL OUTPUT_N:

{
m_Box = MyBox,
m_Aftrib =NULO;
m_Transition = NULO;
m_Method = MyMethod;
m_Parameter = MyParameter;
m_Activation = myActivation;
m_rettype = INTEGER_ATRIB;
break,
}

llexemplo.Create(EXTERNAL_INPUT_DATA,TEXT_ATRIB/]NTEGER_A’I'RIB,“ExtDataZ“,NULO,NULO,"DDE" o1
grafolgate™),
case EXTERNAL INPUT_DATA:

{
m_Box =NULO;,
m_Atirib = NULO;
m_Transition = NULO;
m_Method = MyMethod,
m_Parameter = MyParameter;
m_Activation = myActivation;
m_rettype = MyRetType;
break;
}

/fretorna o tipo
short CGate::GetType(
{

}

return m_Type,

{fretorna o nome
CString CGate::GetLabel()

{
}

return mo_Label;

/lretorna a box associada
short CGate::GeiBox()
{

H

retum m_Box;

/fretoma o atributo associado
short CGate::GetAttrib()

{
}

/fretorna a transigio associada
short CGate::GetTransition()
{

}

return m_Atirib;

return m_Transition,

/retoma o tipo de retorno
short CGate::GetRetType()

{
}

return m_rettype;

-211-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

[iretorna o método
CSiring CGate::GetMethod(}
{

}

return m_Method,

flretorna os parimetros
CString CGate::GetParameter()
{

}

return m_Parameter;

{/ifungdes de acesso
void CGate::SetBOOL(BOOL arg)

ASSERT((m_Type==INT_PERMIT)}|(m_Type==INT_NOT_PERMIT)]
(em_Type=—INT_FULL_PERMIT)(m_Type==INT_FULL_NOT PERMIT)|
(m_Type—EXTERNAL_INPUT_PERMIT)[|(m_Type=—EXTERNAL_INPUT_NOT_PERMIT)}
(m_Type==EXTERNAL_OUTPUT_PERMIT)|[(m_Type==EXTERNAL,_OUTPUT_NOT_PERMIT)|
(m Type=—EXTERNAL_OUTPUT FULL_PERMIT)|\m_Type—EXTERNAL_OUTPUT_FULL NOT_PERMIT);

m_boolean = arg;
i

BOOL CGate::GoAhead()

ASSERTY((m_Type—INT_PERMIT)|((m_Type==INT_NOT_PERMID);
(m_Type==INT_FULL_PERMIT)}j(m_Type—INT_FULL_NOT_PERMIT)]|
(m_Type==EXTERNAL,_INPUT_PERMIT)||(m_Type=EXTERNAL_INPUT_NOT_PERMIT)|
(_ Type==EXTERNAL_OUTPUT PERMIT))|(m_Type==EXTERNAL_OUTPUT_NOT PERMID)|
(m_Type=—EXTERNAL_OUTPUT_FULL_PERMIT)/(m_Type==EXTERNAL_OUTPUT_FULL NOT_PERMIT));

if (mp_Cond!=NULL}
if ({mp_Cond->Evaluate())
retumn (FALSE),

retum(in_boolean);
¥

short CGate::GetActivation(}

return m_Activation,

}
void CGate::SetString(CString arg)

ASSERT((m_Type==INT_DATA}|(m_Type==INT_N)lm_Type==EXTERNAL_INPUT_DATA)I|
(m_Type==EXTERNAL_OUTPUT_DATA){|(m_Type—EXTERNAL_OUTPUT_N));

m_string = arg;
}
CSiring CGate::GetString(Q
ASSERT((m_Type==INT__DATA)||(m_Type-—"']NT_N)|l(m_Type—_—EXTERNAL_INPUT_DATA)ﬂ
(m_Type=EXTERNAL_OU’IPUF_DATA)|](m_Type==EX1‘ERNAL_OUTPUT_N));

if (mp_Cond!=NULL)
if (lmp_Cond->Evaluate())
return ("),

refurn m_string;
}

void CGate::SetInteger(short arg)

ASSERT((m_Type==INT_DATA)l|(m_Type==INT_N)jl(m_Type==EXTERNAL_INPUT_DATA)|
(m_Type—EXTERNAL_OUTPUT DATA)||(m_Type=EXTERNAL_OUTPUT_N));

-212-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

m_integer = arg;

H
long CGate::Getlnteger()

ASSERT((m_Type=INT_DATA)|(m_Type==INT_N)ljtm_Type=EXTERNAL_INPUT_DATA}|
(m_Type==EXTERNAL_OUTPUT_DATA}|(m_Type—EXTERNAL_OUTPUT_N)};

if (mp_Cond!=NULL)
if (lmp_Cond->Evaluate())

return (NULO);

return m_integer;

H

void CGate:: AddConditional(CConditional* pCond)
if (mp_Cond!=NULL)

{

delete mp_Cond;
mp_Cond=NULL;
}

mp_Cond = new CConditicnal;
*mp_Cond) = *(pCond),
}

void CGate::RemoveConditional()
if (mp_Cond!=NULL)

i
delete mp_Cond;
mp_Cond=NULL,

¥
C - Estrutura do Grafo

Files Graph.h and Graph.cpp - E-MFG Graph

#/ graph.h - eMFG Graph header file

/f version: 2.00

Definition Date: 22/03/98

// Last Modified: 08/07/98

// programed by: Mareo A. A. Silva

/f last modified by: Daniel M. S. Ferreira

/f Objetivos: Agrupar todas os objetos de um grafo
class CGraph : public CObject

public:
CGraph();

publie:
CString m_title;
CString m_descr;
private:

class CMarkAttribArray* mp_MarkAttributesArray,
class CArcArray* mp_ArcsArray,

class CGateArray* mp_GatesArray,

class CTransitionArray* mp_TransitionsArray,
class CBoxArmy* mp_BoxesArray,

public:
~CGraph();
class CBoxArray* GetBoxes();
elass CArcArray* GetArcs();
class CTransitionArray* GetTransitions();
class CGateArray* GetGates(),
class CMarkAttribArray* GetAttribTemplates();

-213-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

void GetBoxConnectionsDurnp(class CLinesArmay* p_LinesVector),
void GetBoxesPropertiesDump(class CLinesArray* p_LinesVector);

I3

/ graph.cpp - eMFG Graph implementation file
I version: 2.00

{/ Definition Date: 22/03/98

/f Last Modified: 08/07/98

#/ programed by: Marco A. A Silva

/f last modified by: Daniel M. S. Ferreira

/1 Objetivos: Agrupar todas os objetos de um grafo

#include "stdafx.h" # standard windows aplication
#include "definitions.h" HBE-MFG Constant Definitions
#include "wordsarray.h" /MExtension of String Arrays
#include "bagis.h" //E-MFGQ Basis Class
#include "graph h” HB-MFG Graph Components
#include "marks.h” HE-MFG Marks Definition
#include "arcs.h" HE-MFG Arcs Definition
#include "boxes.h” /E-MFG Boxes Definition
#Hinclude "wansit.h” HE-MFG Transition Definition
#include "gates.h" NE-MFG Gates Definition
#include "listh" f/Linked List Definition
#include "arrays.h" //Arrays Extension Class
CGraph::CGraph()
{

m_title=""

m,_descr=""

mp_MarkAttributesArray = new CMarkAttribArray,
mp_ArcsArmray = new CArcAmay,
mp_GatesArray = new CGateArray;
mp_TransitionsArray = new CTransitionArray,
mp_BoxesArray= new CBoxArmray,

}

CGraph::~CGraph()

{
delete mp_MarkAttributesArray;
delete mp_ArcsAray,
delete mp_GatesArray;
delete inp Transitions Array;
delete mp_BoxesArray,

}

CMarkAttribArray* CGraph:: GetAttribTemplates()

{
retun mp_MarkAttributesArray;

}

class CArcArray* CGraph::GetArcs()

{
return mp_AresArray,

}

CBoxArmmay* CGraph::GetBoxes()

{
retum mp_BoxesArray,

}

class CGateArray* CGraph::GetCGates()

{
return mp_GatesArray,

}
class CTransitionArray* CGraph::GetTransitions()

{
return mp_TransitionsArray,

-214 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

void CGraph::GetBoxesPropertiesDump(class CLinesArray* p_LinesVector)
{
for (long index=0;index<GetBoxes()->CetSize();index++)

{

GetBoxes()->ElementAt(index).GetDump(p_LinesVector);

}
}
void CGraph::GetBoxCennectionsDump(class CLinesArray* p_LinesVector)
{

CWordsArray* p_Line;

for (long index=0;index<GetBoxes()->GetSize();index++)
{
p_Line = new CWordsAmay;

long MumOrigins = GetBoxes()->ElementAt(index). GetNumOriginAres();
long* Originlndex = GetBoxes()—>ElmnentAt(index).GﬂOﬁginTransitionsIndexList(GetArcsO);

CSiring Origins;
for (long k=0;k<NumQrigins;k++)
{
Hk—0)
Ongms = u[u:’
}
Origins = Origins + GetTransitionsQ->ElementAt(OriginIndex[k]}.GetLabel(),
if (k-<NumOrigins-1)
Ori g]ns —*ﬁ II’ N.’
}
else
{
Origins _P= L]'l;
}
}
if (NumOrigins=—0)
Origins = "()';
p_Line->Add(QOrigins),
}
else
{
p_Line->Add(Origins);
!

p_Line->Add("->");

CString Label;

if (GetBoxes()->ElementAt(index). HasMark(}))
{

Label = "** " + GetBoxes()->ElementAt(index).GetLabel(} + " **",
}

else

{
Label = GetBoxes()->ElementAt(index).GetLabel();
H
p_Line->Add(Label);
p_Line>Add("->"),
long NumDestiny = GetBoxes()->ElementAt{index).GetN umDestinyArcs();
long* DestinyIndex = GetBoxes()-
>ElementAt(index) .GetDestiny TrensitionsIndexList(GetArcs(),GetGates() GetBoxes());
CString Destiny,
for (k=0;k<NumDestiny;k++)
{

if (==0)
{
Destiny =" ",

}
Destiny = Destiny + GetTransitionz()->ElementAt(DestinyIndex[k1) GetLabel();
if (k<NumDestiny-1)

{

Destiny +=", ";

-215-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produciio

else
{
Desh'ny # "]H.’
}

}

if (NumDestiny=—0)

Destiny = "I

p_Line->Add(Destiny);

}

else
{
p_Line->Add(Destiny),

i
p. LinesVector->Add(*p_Line);
if (DestinyIndex!=NULL)
delete [[Destinylndex;
if (Originindex!=NULL)
delete []OriginIndex;
delete p_Line,
¥

¥

D - Gerenciador de Marcas e Controlador de 1/0

Files Manager.h and Manager.cpp - E-MFG Mark Manager

// manager.h eMFG MarkManager Definition:
i version:1.0a

/f Definition Date: 07/03/98

// Daniel M. S. Ferreira

{/ Last Modified: 08/07/98

/1 Programed by: Daniel M. 5. Ferreira

/ Last modified by: Daniel M. 8. Ferreira

#/ Objetivos: Definir a estrutura do Gerenciador de Marcas do grafo

H Mark Manager

elass CMarkManager:public CObject

{

Pprivate:

class CMarkAttribArray* mp_MarkAtributes Array,
class CArcAmay* mp_ArcsArray,

class CGateAmray* mp_GatesAxray,

class CTransitionAmay* mp_TransitionsArray;
class CBoxArray* mp_BoxesArray,

class CGraph* mp_Graph;

CTime m_ActualTime,

CTimeSpan m_GraphCycleTime;

CString m_CycleTag;

BOOL m_FileLog;

BOOL m_RunnedOnce;

publie:

CMarkManager();

~CMarkManager();

CMarkManager(CMarkAttribArray* p_MarkAtributesArray,C ArcArray* p_ArcsArray,CGateArray™
p_GatesArray,CTransitionArray* p_TransitionsArray, CBoxArtay* p_BoxesAsray);

void Create{CMarkAttribAmay* p_MarkAtributes Array,CArcArtay* p_ArcsArray, CGateArray* p._GatesArray,CTransitionArray*
p_TransitionsAmay, CBoxArray* p_BoxesAray);,

void Create (CGraph* MyGraph),

void SetUpTransitions();
void FireTransitions();
void LogGraph();

/f Access Functions:

-216-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

void SetFileL.og(BOOL Status);
BOOL TsLogging();

CString GetTimeStamp();
CString GetTimeSpanStamp();
CTime GetLastFireTime();
CTimeSpan GetLastCycleSpan();

elass CBoxMray* GetBoxes(),

class CBox& GetBox{CString BoxLabel),

class CBox& GetBox(long MyIndex);

class CMarkAttribute GetMarkAtribute(CString BoxLabel, CString MyLabel);
ciass CMarkAttribute GetMarkAtribute(long MyBoxIndex, CString MyLabel),

class CArcArray* GetArcs();
class CArc& GetArc(long MyIndex),

class CTransitionArray* GeiTransitions();
class CTransition& GetTransition(long Mylndex),

class CGateArray* GetGates();
class CGate& GetGate(CString GateLabel),
class CGate& GetGate(fong Myindex),

CMarkAttribAmray* GetAtribTemplates(),

void SeekAndSolveConflicts();

void RunControlCycle();

wvoid UpdateTimers(CTime Actusal),

protected:

void SeekAndSolveInputConflicts();

void SeekAndSotveQutputConflicts();

void SolvelnputConflict(long NumCfConflicts, long* p_MyScTransitions);
void SolveOutputConflict(Jong NumOfContlicts, long* p_MyDestinyTransitions};
void LogFiredTransition{CString TrensitionLabel),

N

// manager.cpp eMFG MarkManager Definition:

{/ version:1.0a

/f Definition Date: 07/03/98

#/ Daniel M. 8. Ferreira

Last Modified: 08/07/98

/f Programed by: Daniel M. S. Ferreira
/I Last modified by: Daniel M. 8. Ferreira

Objetivos: Implementar o Gerenciadot de Marcas do grafo
#include "stdafx.h” 1 standard windows aplication
#include "elementsh" #/ E-MFG Standard Elements

#include "manager.h"

/{ The headers bellow are necessary for the random number generator
/7 used to solve the graph's conflicts:

#include <stdlibh> // rand() function header

Yinelude <time h> // time() function header

/ Mark Manager

#/ ¢lass CMarkManager:public CObject
CMarkManager::CMarkManager(

{

mp_MarkAtributesAmray=NULL;

mp_ArcsAmay=NULL;

-217-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgéo

mp_GatesArray=NULL;
mp_TransitionsArray=NULL,
mp_BoxesArray=NULL;

HCTime m_ActualTime,
//CTimeSpan m_GraphCycleTime;
m_FileLog = FALSE,
mp_Graph=NULL;

m_CycleTag = "><";
m_RunnedOnce = FALSE;

}

CMarkManager::~CMarkManager()

{

/! void destruetor: there is no need to free memory here
// the mark manager pointers belong to the graph

}
void CMarkManager: :Create (CGraph* MyGraph)

{

mp_MarkAtributes Array=MyGraph->GetAtribTemplatesQ;

mp_ArcsArray=MyGraph->GetArcs();

mp_GatesAmray=MyGraph->GetGates();

mp_Transitions Array=MyGraph->GetTransitions();

mp_BoxesArray=MyGraph->GeiBoxes();

ASSERT((mp MarkAtributesArray!=NULL)&&
(mp_ArcsArray/=NULL)&&
(mp_GatesArray!=NULL)&&
(mp_TransitionsArray=NULL)&&
{mp_BoxzesAmay!l=NULL});

fICTime m_Actual Time;

HCTimeSpan m_CraphCycleTime;,

mp_Graph = MyGraph,

m_FileLog = FALSE,

}

CMarkManager::CMarkManager(CMarkAttribArmray* p_MarkAtributesArray,CArcAmay® p_ArcsArray,CGateArray*
p_GatesArray,CTransitionAsray* p_TransitionsAsray, CBoxAmay* p_BoxesAmay)

{

ASSERT(FALSE),
mp_MarkAiributesArray=p_MarkAtributesArray;
mp_ArcsArray=p ArcsArray;
mp_GatesArray=p_GatesArray,
mp_TransitionsArray=p_TransitionsArray,
mp_BoxesArray=p_BoxesAtray,

ASSERT({mp_MarkAtributesArray!=NULL)&&
(mp_ArcsAmray|=NULL)&&
{mp_GatesArray!=NULL)&&
(mp_TransitionsArray!=NULL)&&
{mp_BoxesArray!'=NULL)),

/ICTime m_ActualTime;
//CTimeSpan m_GraphCycleTime;
m_FileLog =FALSE;

}

void CMarkManager::Create(CMark AttribArray* p.MarkAtributesArray,CArcArray* p_ArcsArray,CGateArray*
p_GatesAmay,CTransitionAsray* p_TremsitionsAmay, CBoxAmnay* p_BoxesAray)

t

ASSERT(FALSE),

mp_MarkAtributesArray=p_Mark AtributesArray;

mp_AtesAmay=p_AresArray,

mp_GatesArray=p_GatesArray,

mp_TransitionsArray=p_TransitionsArray;

mp_BoxesAray=p_BoxesAmay,

ASSERT{(mp_MarkAtributes Array!=NULL)& &

(mp_ArcsArmay!=NULL)&&

(mp_GatesArray!=NULL)&&
{mp_TransitionsArray! =NULL)&&
(mp_BoxesArray!=NULL)),

//CTime m_ActuelTime;
HCTimeSpan m_GraphCycleTime;

-218 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

m_FileLog = FALSE,
m_RunnedOnce = FALSE,
H

void CMarkManager:: SeekAndSolveInputConflicts()

{

// This function searches for any pos-condition box that have

// more than one transition ready to be fired connected to it

/1 if there is a box in this state the function SolvelnputConflict (..)
/1 15 called for these transitions.

long* p_TransitionsIndex = NULL;

long ActualNumOfConflicts = 0;

long Count=0;

for (Jong index=0;index<GretBoxes()->GetSize(),index-++)
{
CBox ActualBox = (GetBoxes(Q->GetAt(index));
if (ActualBox.IsAReadyPosCondition())

{
Tong NumArss = ActualBox GetNumOriginAres(;
Count=0;
if (NumAres>1)
{
long* MyTransitions =

ActualBox GetOriginTransitionsIndexList(GetArcs()),
p_TransitionsIndex = new longfNumAurcs];
for (long pointer=0;pointer<NumArcs;pointer++)
{

if ((GetTransitions()-
>GetAt(MyTransitions[pointer])).CanBeFired(})
{
p_TransitionsIndex[Count] = MyTransitions{pointer];
Count++;
}
}

if (Cotnt>1)

{
ActualNumOfContlicts = Count;

SolvelnputConflict{ActualNumOfConflicts,p_Transitionsindex);

}
delete p_TransitionsIndex;
delete MyTransitions;

}
}
}
}
votd CMarkManager:: SeekAndSolveOutputContlicts(
{
/f This function searches for amy pre-condition box that have
// more than one transition ready to be fired connected to it
// if there is & box in this state the function SolveQutputConflict {.)
{/ is called for these transitions.
long* p_TransitionsIndex = NULL;
long ActualNumOfConflicts = 0,
long Count=0;
for (long index=0;index<GetBoxes(->GetSize();index++)
{
CBox ActualBox = (GetRoxes()->GetAt(index));
if (ActualBox.IsAReadyPreCondition())
{
long NumAres = ActualBox. GetNumDestiny Arcs();
Count=0;
if (NumAres>1)
{
long* MyTransitions =

ActualBox GetDestinyTransitionsIndexList(GetAres(),GetGates(),GetBoxes());
p_TransitionsIndex = new long[NumAres];
for (long pointer=0;pointer<NurmArcs;pointer++)

-219-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

{
if (GetTransitions(}-
>GetAt(MyTransitions[pointer])).CanBeFired())
{
p_TransitionsIndex[Count] = MyTransitions[pointer];

Count++;
}

}

if (Count>1}
{
ActualNumOfConflicts = Count;

SolveQutputConflict(ActuaNumOfConflicts,p_Transitionsindex),

H
delete p_Transitionsindex;
delete MyTransitions;

}
}
}
}
void CMarkManager::SolveInputConflict(fong NumOfConflicts, long* p_MySrcTransitions)
i

/ Each transition in conflict has an equal chance to fire
J/ This function calculates this chance(subset) and generates a random
{/ percentile number to dstermine the winner transition index

ASSERT((NumQfConflicts>0)&&(p_MySreTransitions!=NULL)},

srand({unsigned)time(NULL }),

it RandNumber = rand(};

double Percentile = 100.0*((double)RandNumber)/({double)RAND_MAZX),
double Subset = 100.0/(double)NumOfConflicts;
ASSERT((Subset>0.0001));

long Count =0;

while (Percentile-Subset>0.0001)

Percentile=Percentile -~ Subset;,
Count+H,;

!
ASSERT(Count<NumOfConflicts);
Searches for a previously solved conflict:
BOOL SolvedConflict=FALSE;
for (long index=0;index<NumOfConflicts;index++)

{
SolvedContlict = SolvedConflict | GetTransition(p_MySrcTransitions[index]).IsASclvedConflict();
if (SolvedConflict)/If this transition is a solved conflict

{
Count = index; //This is the transition to be fired;

break;
H
}
/1 Only one transition can be fired:
for (index=0;index<NumOfConflicts;index-++)
{
if {index!=Count)
{
GetTransition(p_MySrcTransitions{index]). SetChangeFlag(FALSEY,
}
else{
/! this transition will be fired:
GetTransition(p_MySreTransitions({index|). SetChangeFlag(TRUE);
GetTransition(p_MySrcTransitions[index]). SetConflictFlag(TRUE);
}
H

H

void CMarkManager:: SolveOutputConflict(long NumOfConflicts, long* p_MyDestiny Transitions)
{

-220 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

// Each transition in conflict has an equal chance to fire
// This fimetion calculates this chance(subset) and generates a random
// percentile number to determine the winner transition index
ASSERT((NumOfConflicts>()&&(p_MyDestinyTransitions!=NULL));
srand((unsigned)time(NULL });
int RandNumber = rand();
double Percentile = 100.0*({double)RandNumber)/({(double)RAND_MAX),
double Subset = 100.0/(double)NumOfConflicts;
ASSERT((Subset=0.0001));
long Count =0,
while (Percentile-Subset>0.0001)

{

Percentile=Percentile - Subset;

Count++;

H
ASSERT(Count<NumOfConflicts);
// Searches for a previously solved conflict:
BOOL SolvedConflict=FALSE;
for (tong index=0;index<NumOfConflicts;index++)

d
SolvedConflict = SolvedConflict | GetTransition(p_MyDestinyTransitionsfindex]).IsASolvedConflict();
if (SolvedConflict)//If this transition is a solved conflict

{
Count = index; //This is the transition to be fired,
break;
}
t
/ Only one transition can be fired:
for (index=0,index<NumOfConflicts;index++)
{
if (index!=Count}
{
GetTransition(p_MyDestiny Transitions{index]}.SetChangeFlag(FALSE),
b
else{
/f this transition will be fired:
GetTransition(p_MyDestinyTransitions|index]). SetChangeFlag(TRUE),
GetTransition(p_MyDestiny Transitions|index]). SetConflictFlag(TRUE),
H
}
H
void CMarkManager::SetUpTransitions()
{

for (long index=0;index<(etTransitions()->GetSize();index++}
{
GetTransition(index). UpdateFlags(),

H
}

void CMarkManager::FireTransitions()
i{f (m_CycleTag == "><")

m_CycleTag = "<>";
else

m_CyeleTag = "><";

H
for (long index=0;index<GetTransitions()->GetSize();index++)

{
if (GetTransition(index) CanBeFired()
{
GetTransttion{index) FireTransition();
if (IsLogging()
LogFiredTransition(Cet Transition(index). GetLabel()),
}
H
else

-221-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Produgiio

{

GetTransition(index) ResetFlags(),

}

¥

H
void CMarkManager::LogGraph()
{
FILE* file=NULL; fffile stream
CString line; /Minha do arquivo
CTime Now;

Now=m_ActualTime; //Pega o timer atual;

CString filename = mp_Graph->m_title;
filename=filename+".ghp":
fite = fopen(filename,"a+");//abre 0 arquivo permitindo que o MS_DOS Type
Hvisualize o arquivo
if (file==NULL)
return;,

line = "TimeStamp: [d/m/Ay][H:M:S] \n";
fprintf{file,"%os" line);
if (m_RurmedOnce)

line = "TimeStamp: * + Now. Format("{%d/%m/Yey][%H:%M:%8] \n");
else

line = "TimeStamp: " + Now.GetCurrentTime() Format("[%d/%m/%y][%H:%M:%S] \n"),
fprintffile,"%s" line),

CString EMFGCompilerInfo = "/* EMFG Script Language Version 1.0 *An";
EMFGCompilerInfo += "/* EMFG Interpreter Version 1.0 *An";

EMFGCompilerInfo += "/* EMFG Linker Version 1.0 *An",

EMFGCompilerInfo +="/* EMFG MarkManager Version 1.0 *An\n";

EMFGCompilerInfo 4= "/* EMFG Communicator Version 1.0 *An\n",

CString SectionHeader = "<< E-MFG Boxes Connections Dump >>\n\n",

CString DumpFormat = "Dumping Format:/n",

DurnpFormat += "[Origin Transition Labei]->(BoxLabel}->{Destiny Transition Label]\n";
DumpFormat += "if a box has a mark it's label wili be marked as follows:\n";

DumpFormat += "[Origin Transition Label]->(** BoxLabel **)->[Destiny Transition Label]\n\n";

line = EMFGCompilerInfo;
fprintf(file,"%os" line);

line = SectionHeader;
fprintfifile,"%s" line);

line = DumpFormat;
fprintf(file,"%%s" line);

for (Jong index=0;index<GetBoxes()->GetSize(); index++)
{
long NumOrigins = GetBoxes()->ElementAt{index). GethNumOriginAres();
long* Originlndex = GetBox(index).GetOriginTransitionsIndexList(GetArcs();
CString Origins = "[";
for (long k=0;k<NumOrigins;k++)
{

Origins = Origins -+ GetTransition{Originindex[k]).GetLabel;
if (k<NumOrigins-1)

{

Origins +="",

H

OTEgl.ﬂS 4=" I";

long NumDestiny = GetBoxes()->ElementAt(index). GetNumDestiny Ares();
Tong* Destinylndex = GetBox(index).GetDestinyTransitionsIndexList(GetArces(),GetGates(),GetBoxesQ);
CString Destiny = "[";
for (k=0;k<NumDestiny k++)
{
Destiny = Destiny + GetTransition(Destinyindex[k]).GetLabel (),
if (k<NumDestiny-1)
{
Destiny +=", ",
H

-222-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

Destiny +="1"
CString Label;
if (GetBox(index). HasMark())
I{,abel = M 14 GetBox(index). GetLabel() + * +**,
else }

{
Label = GetBox(index).GetLabel();
}

CString Output = Origins + "> (" + Label + ") =" + Destiny + "n";
line = Output;

fprintf(file,"%s" line),

}

CString EndSectiontHeader = "\n<<END: E-MFG Boxes Comnections Dump >>\n";
line = EndSectionHeader;
{printf{file,"%s" line);

CLinesArray* p_LinesArray,
p_LinesArmay = new CLmesArray,
mp_Graph->GetBoxesPropertiesDump(p_LinesArray);

SectionHeader = "<< E-MFG Boxes Properties Dump >>\n\n";

DumpFormat = "Dumping Format:/n",

DumpFormat += "Name , Type , # Marks: ";

DumpFormat += "Atrib]l = XXX & Atrib2 = XXX & ... & AtribN = XXX\n\n",

line = SectionHeader;
fprintf(file,"%s" line);
line = DumpFermat;

fprintf(file,"%s" line);

for (long y=0, y<p_LinesAmay->GetSize();y++)
{

line ="";
for (Jong x=0; x<p_LinesArray->GetAt(y).GetSize(; x++)

i

if (x<2)
{
line += p_LinesArray->GetAt(y).GetAt() +" , %
H

else
{
if (==2)

{
if (xt=p_LinesArray->GetAt(y).GetSize(-1)
line += p_LinesAmay->GetAt(y).GetAt(x) + "1 ",
else
line += p_LinesArray->GetAt(y).GetAt(x) + "n";
}
else
{
if (xI=p_Lines Array->GetAt(y). GetSize()-1)
{
line += p_LinesArray->GetAty).GetAt(x) + " & ";
}
else
{
line += p_LinesArmay->(etAt(y). GetAt(x) + "n'\n";
H
}
H

}
fprintf(file,"%es" line);
H

EndSectionHeader = "\n<<END: E-MFG Boxes Properties Dump >>\n",

line = EndSectionHeader,
fprintf{file,"%s" line),

-223-

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

delete p_LinesArray,

SectionHeader = "<< E-MFG Gates Values Dump >>\n\n";
DumpFommat = "Dumping Format:n",

DumpFormat += "(GateLabel)=Value'n",

DumpFormat += "(GateLabel)="String"n\n";

line = SectionHeader;
fprintf{file,"%s" line);

line = DumpFormat;
fprintf{file,"%s",line);

for (index=0;index<GetGates()->GetSize();index++)

{
CString OutValue;
switch (GetGate(index).GetType())
i
case TEXT_ATRIB:
{
OutValue = "" + GetGate(index).GetString() + "";
break;
}
case INTEGER_ATRIB:
{
CSitring Value;
Value Format("%ld", GetGate(index). GetInteger()),
QutValue = Value;
break;
¥
break;
5
CString Cutput;
Cutput = "(" + GetGate(index).GetLabel() + "}=" + OutValue +"\a";
fine = Output;
fprintf{file,"%s" line),

3

EndSectionHeader = "n<<END: E-MFG Gates Values Dump >>\n";
line = EndSectionHeader,
fprinti{file,"%4s" line);

felose(file);

t

Access Functions:
void CMarkMenager:: SeiFileLog(BOOL Status)

{
m_FileLog = Status;
}

BOOL CMarkManager::isLogging()
{

return m_FileLog;

H

CString CMarkManager::GetTimeStamp()

{
retum m_Actual Time. Format("%c");

}

CString CMarkManager::GetTimeSpanStamp()

{
CString Return ="Seconds: " +m_GraphCycleTime.Format("%5");

retum Retum;

}

CTime CMarkManager::GetlastFireTime()
{

-224 -

Controlador E-MFG para Sistemas Integrados e Flexiveis de Producio

return m_ActualTime;
}

CTimeSpan CMarkManager::GetLastCycleSpan()
{

return m_GraphCycleTime;

}

class CBoxArray* CMarkManager::GetBoxes()

{
refurn mp_BoxesArray,

}
class CBox& CMarkManager::GetBox(CString BoxLabel)

{
for (long index=0;index<GetBoxes{}->GetSize();index++)

{
if (GetBoxes()->GetAt(index). GetLabel)==BoxLabel)
break;

B
ASSERT(GetBoxes()->GetAt(index).GetLabel==BoxLabet);
return GetBoxes()->ElementAt(index);

}

class CBox& CMarkManager::GetBox(long MyIndex)

{

ASSERT(MyIndex>=0);
ASSERT(MyIndex<GetBoxes()->GetSize());
retarn GetBoxes()->ElementAt(Mylndex);

}

class CMarkAttribute CMarkManager::GetMark Atribute(CString BoxLabel, CString MyLabel)

{
return GetBox(BoxLabel). GetMarkAtrib(MyLabel);

H
class CMarkAitribute CMarkMagager::GetMark Atnibute(long MyBoxIndex, CString MyLabel)

{

ASSERT(MyBoxIndex>=0),
ASSERT(MyBoxIndex<GetBoxes()->GetSize());

return GetBoxes()->ElementAt{MyBoxIndex). GetMark Atrib(MyLabel):

}

class CArcArray* CMarkManager::GetAres()

{
return mp_ArcsAtray;

}
class CAre& CMarkManager::GetArc(long Mylndex)

{

ASSERT(MyIndex>=0),
ASSERT(MyIndex<GetAres()->GetSize());
return GeiAres()->ElementAt(MyIndex);

}

class CTransitionArray* CMarkManager:: GetTransitions()

{
return mp_TransitionsArray,

}
class CTransitioné& CMarkManager::GetTransition(long Myndex)

{

ASSER<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>